Compare the Top AI Models that integrate with Spark NLP as of November 2025

This a list of AI Models that integrate with Spark NLP. Use the filters on the left to add additional filters for products that have integrations with Spark NLP. View the products that work with Spark NLP in the table below.

What are AI Models for Spark NLP?

AI models are systems designed to simulate human intelligence by learning from data and solving complex tasks. They include specialized types like Large Language Models (LLMs) for text generation, image models for visual recognition and editing, and video models for processing and analyzing dynamic content. These models power applications such as chatbots, facial recognition, video summarization, and personalized recommendations. Their capabilities rely on advanced algorithms, extensive training datasets, and robust computational resources. AI models are transforming industries by automating processes, enhancing decision-making, and enabling creative innovations. Compare and read user reviews of the best AI Models for Spark NLP currently available using the table below. This list is updated regularly.

  • 1
    OpenAI

    OpenAI

    OpenAI

    OpenAI’s mission is to ensure that artificial general intelligence (AGI)—by which we mean highly autonomous systems that outperform humans at most economically valuable work—benefits all of humanity. We will attempt to directly build safe and beneficial AGI, but will also consider our mission fulfilled if our work aids others to achieve this outcome. Apply our API to any language task — semantic search, summarization, sentiment analysis, content generation, translation, and more — with only a few examples or by specifying your task in English. One simple integration gives you access to our constantly-improving AI technology. Explore how you integrate with the API with these sample completions.
  • 2
    BERT

    BERT

    Google

    BERT is a large language model and a method of pre-training language representations. Pre-training refers to how BERT is first trained on a large source of text, such as Wikipedia. You can then apply the training results to other Natural Language Processing (NLP) tasks, such as question answering and sentiment analysis. With BERT and AI Platform Training, you can train a variety of NLP models in about 30 minutes.
    Starting Price: Free
  • 3
    RoBERTa
    RoBERTa builds on BERT’s language masking strategy, wherein the system learns to predict intentionally hidden sections of text within otherwise unannotated language examples. RoBERTa, which was implemented in PyTorch, modifies key hyperparameters in BERT, including removing BERT’s next-sentence pretraining objective, and training with much larger mini-batches and learning rates. This allows RoBERTa to improve on the masked language modeling objective compared with BERT and leads to better downstream task performance. We also explore training RoBERTa on an order of magnitude more data than BERT, for a longer amount of time. We used existing unannotated NLP datasets as well as CC-News, a novel set drawn from public news articles.
    Starting Price: Free
  • 4
    XLNet

    XLNet

    XLNet

    XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective. Additionally, XLNet employs Transformer-XL as the backbone model, exhibiting excellent performance for language tasks involving long context. Overall, XLNet achieves state-of-the-art (SOTA) results on various downstream language tasks including question answering, natural language inference, sentiment analysis, and document ranking.
    Starting Price: Free
  • 5
    ALBERT

    ALBERT

    Google

    ALBERT is a self-supervised Transformer model that was pretrained on a large corpus of English data. This means it does not require manual labelling, and instead uses an automated process to generate inputs and labels from raw texts. It is trained with two distinct objectives in mind. The first is Masked Language Modeling (MLM), which randomly masks 15% of words in the input sentence and requires the model to predict them. This technique differs from RNNs and autoregressive models like GPT as it allows the model to learn bidirectional sentence representations. The second objective is Sentence Ordering Prediction (SOP), which entails predicting the ordering of two consecutive segments of text during pretraining.
  • 6
    T5

    T5

    Google

    With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself.
  • Previous
  • You're on page 1
  • Next