Compare the Top AI Models that integrate with PyTorch as of July 2025

This a list of AI Models that integrate with PyTorch. Use the filters on the left to add additional filters for products that have integrations with PyTorch. View the products that work with PyTorch in the table below.

What are AI Models for PyTorch?

AI models are systems designed to simulate human intelligence by learning from data and solving complex tasks. They include specialized types like Large Language Models (LLMs) for text generation, image models for visual recognition and editing, and video models for processing and analyzing dynamic content. These models power applications such as chatbots, facial recognition, video summarization, and personalized recommendations. Their capabilities rely on advanced algorithms, extensive training datasets, and robust computational resources. AI models are transforming industries by automating processes, enhancing decision-making, and enabling creative innovations. Compare and read user reviews of the best AI Models for PyTorch currently available using the table below. This list is updated regularly.

  • 1
    LTXV

    LTXV

    Lightricks

    LTXV offers a suite of AI-powered creative tools designed to empower content creators across various platforms. LTX provides AI-driven video generation capabilities, allowing users to craft detailed video sequences with full control over every stage of production. It leverages Lightricks' proprietary AI models to deliver high-quality, efficient, and user-friendly editing experiences. LTX Video uses a breakthrough called multiscale rendering, starting with fast, low-res passes to capture motion and lighting, then refining with high-res detail. Unlike traditional upscalers, LTXV-13B analyzes motion over time, front-loading the heavy computation to deliver up to 30× faster, high-quality renders.
    Starting Price: Free
  • 2
    CodeQwen

    CodeQwen

    Alibaba

    CodeQwen is the code version of Qwen, the large language model series developed by the Qwen team, Alibaba Cloud. It is a transformer-based decoder-only language model pre-trained on a large amount of data of codes. Strong code generation capabilities and competitive performance across a series of benchmarks. Supporting long context understanding and generation with the context length of 64K tokens. CodeQwen supports 92 coding languages and provides excellent performance in text-to-SQL, bug fixes, etc. You can just write several lines of code with transformers to chat with CodeQwen. Essentially, we build the tokenizer and the model from pre-trained methods, and we use the generate method to perform chatting with the help of the chat template provided by the tokenizer. We apply the ChatML template for chat models following our previous practice. The model completes the code snippets according to the given prompts, without any additional formatting.
    Starting Price: Free
  • 3
    Gemma 3

    Gemma 3

    Google

    Gemma 3, introduced by Google, is a new AI model built on the Gemini 2.0 architecture, designed to offer enhanced performance and versatility. This model is capable of running efficiently on a single GPU or TPU, making it accessible for a wide range of developers and researchers. Gemma 3 focuses on improving natural language understanding, generation, and other AI-driven tasks. By offering scalable, powerful AI capabilities, Gemma 3 aims to advance the development of AI systems across various industries and use cases.
    Starting Price: Free
  • 4
    Gemma 3n

    Gemma 3n

    Google DeepMind

    Gemma 3n is our state-of-the-art open multimodal model, engineered for on-device performance and efficiency. Made for responsive, low-footprint local inference, Gemma 3n empowers a new wave of intelligent, on-the-go applications. It analyzes and responds to combined images and text, with video and audio coming soon. Build intelligent, interactive features that put user privacy first and work reliably offline. Mobile-first architecture, with a significantly reduced memory footprint. Co-designed by Google's mobile hardware teams and industry leaders. 4B active memory footprint with the ability to create submodels for quality-latency tradeoffs. Gemma 3n is our first open model built on this groundbreaking, shared architecture, allowing developers to begin experimenting with this technology today in an early preview.
  • 5
    Gemma

    Gemma

    Google

    Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is inspired by Gemini, and the name reflects the Latin gemma, meaning “precious stone.” Accompanying our model weights, we’re also releasing tools to support developer innovation, foster collaboration, and guide the responsible use of Gemma models. Gemma models share technical and infrastructure components with Gemini, our largest and most capable AI model widely available today. This enables Gemma 2B and 7B to achieve best-in-class performance for their sizes compared to other open models. And Gemma models are capable of running directly on a developer laptop or desktop computer. Notably, Gemma surpasses significantly larger models on key benchmarks while adhering to our rigorous standards for safe and responsible outputs.
  • 6
    Gemma 2

    Gemma 2

    Google

    A family of state-of-the-art, light-open models created from the same research and technology that were used to create Gemini models. These models incorporate comprehensive security measures and help ensure responsible and reliable AI solutions through selected data sets and rigorous adjustments. Gemma models achieve exceptional comparative results in their 2B, 7B, 9B, and 27B sizes, even outperforming some larger open models. With Keras 3.0, enjoy seamless compatibility with JAX, TensorFlow, and PyTorch, allowing you to effortlessly choose and change frameworks based on task. Redesigned to deliver outstanding performance and unmatched efficiency, Gemma 2 is optimized for incredibly fast inference on various hardware. The Gemma family of models offers different models that are optimized for specific use cases and adapt to your needs. Gemma models are large text-to-text lightweight language models with a decoder, trained in a huge set of text data, code, and mathematical content.
  • 7
    PaliGemma 2
    PaliGemma 2, the next evolution in tunable vision-language models, builds upon the performant Gemma 2 models, adding the power of vision and making it easier than ever to fine-tune for exceptional performance. With PaliGemma 2, these models can see, understand, and interact with visual input, opening up a world of new possibilities. It offers scalable performance with multiple model sizes (3B, 10B, 28B parameters) and resolutions (224px, 448px, 896px). PaliGemma 2 generates detailed, contextually relevant captions for images, going beyond simple object identification to describe actions, emotions, and the overall narrative of the scene. Our research demonstrates leading performance in chemical formula recognition, music score recognition, spatial reasoning, and chest X-ray report generation, as detailed in the technical report. Upgrading to PaliGemma 2 is a breeze for existing PaliGemma users.
  • Previous
  • You're on page 1
  • Next