Compare the Top AI/ML Model Training Platforms that integrate with Snowflake as of October 2025

This a list of AI/ML Model Training platforms that integrate with Snowflake. Use the filters on the left to add additional filters for products that have integrations with Snowflake. View the products that work with Snowflake in the table below.

What are AI/ML Model Training Platforms for Snowflake?

AI/ML model training platforms are software solutions designed to streamline the development, training, and deployment of machine learning and artificial intelligence models. These platforms provide tools and infrastructure for data preprocessing, model selection, hyperparameter tuning, and training in a variety of domains, such as natural language processing, computer vision, and predictive analytics. They often include features for distributed computing, enabling the use of multiple processors or cloud resources to speed up the training process. Additionally, model training platforms typically offer integrated monitoring and debugging tools to track model performance and adjust training strategies in real time. By simplifying the complex process of building AI models, these platforms enable faster development cycles and more accurate predictive models. Compare and read user reviews of the best AI/ML Model Training platforms for Snowflake currently available using the table below. This list is updated regularly.

  • 1
    Flyte

    Flyte

    Union.ai

    The workflow automation platform for complex, mission-critical data and ML processes at scale. Flyte makes it easy to create concurrent, scalable, and maintainable workflows for machine learning and data processing. Flyte is used in production at Lyft, Spotify, Freenome, and others. At Lyft, Flyte has been serving production model training and data processing for over four years, becoming the de-facto platform for teams like pricing, locations, ETA, mapping, autonomous, and more. In fact, Flyte manages over 10,000 unique workflows at Lyft, totaling over 1,000,000 executions every month, 20 million tasks, and 40 million containers. Flyte has been battle-tested at Lyft, Spotify, Freenome, and others. It is entirely open-source with an Apache 2.0 license under the Linux Foundation with a cross-industry overseeing committee. Configuring machine learning and data workflows can get complex and error-prone with YAML.
    Starting Price: Free
  • 2
    Intel Tiber AI Studio
    Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
  • 3
    Kraken

    Kraken

    Big Squid

    Kraken is for everyone from analysts to data scientists. Built to be the easiest-to-use, no-code automated machine learning platform. The Kraken no-code automated machine learning (AutoML) platform simplifies and automates data science tasks like data prep, data cleaning, algorithm selection, model training, and model deployment. Kraken was built with analysts and engineers in mind. If you've done data analysis before, you're ready! Kraken's no-code, easy-to-use interface and integrated SONAR© training make it easy to become a citizen data scientist. Advanced features allow data scientists to work faster and more efficiently. Whether you use Excel or flat files for day-to-day reporting or just ad-hoc analysis and exports, drag-and-drop CSV upload and the Amazon S3 connector in Kraken make it easy to start building models with a few clicks. Data Connectors in Kraken allow you to connect to your favorite data warehouse, business intelligence tools, and cloud storage.
    Starting Price: $100 per month
  • 4
    OPAQUE

    OPAQUE

    OPAQUE Systems

    OPAQUE Systems offers a leading confidential AI platform that enables organizations to securely run AI, machine learning, and analytics workflows on sensitive data without compromising privacy or compliance. Their technology allows enterprises to unleash AI innovation risk-free by leveraging confidential computing and cryptographic verification, ensuring data sovereignty and regulatory adherence. OPAQUE integrates seamlessly into existing AI stacks via APIs, notebooks, and no-code solutions, eliminating the need for costly infrastructure changes. The platform provides verifiable audit trails and attestation for complete transparency and governance. Customers like Ant Financial have benefited by using previously inaccessible data to improve credit risk models. With OPAQUE, companies accelerate AI adoption while maintaining uncompromising security and control.
  • 5
    Modelbit

    Modelbit

    Modelbit

    Don't change your day-to-day, works with Jupyter Notebooks and any other Python environment. Simply call modelbi.deploy to deploy your model, and let Modelbit carry it — and all its dependencies — to production. ML models deployed with Modelbit can be called directly from your warehouse as easily as calling a SQL function. They can also be called as a REST endpoint directly from your product. Modelbit is backed by your git repo. GitHub, GitLab, or home grown. Code review. CI/CD pipelines. PRs and merge requests. Bring your whole git workflow to your Python ML models. Modelbit integrates seamlessly with Hex, DeepNote, Noteable and more. Take your model straight from your favorite cloud notebook into production. Sick of VPC configurations and IAM roles? Seamlessly redeploy your SageMaker models to Modelbit. Immediately reap the benefits of Modelbit's platform with the models you've already built.
  • Previous
  • You're on page 1
  • Next