Compare the Top AI/ML Model Training Platforms that integrate with OpenVINO as of July 2025

This a list of AI/ML Model Training platforms that integrate with OpenVINO. Use the filters on the left to add additional filters for products that have integrations with OpenVINO. View the products that work with OpenVINO in the table below.

What are AI/ML Model Training Platforms for OpenVINO?

AI/ML model training platforms are software solutions designed to streamline the development, training, and deployment of machine learning and artificial intelligence models. These platforms provide tools and infrastructure for data preprocessing, model selection, hyperparameter tuning, and training in a variety of domains, such as natural language processing, computer vision, and predictive analytics. They often include features for distributed computing, enabling the use of multiple processors or cloud resources to speed up the training process. Additionally, model training platforms typically offer integrated monitoring and debugging tools to track model performance and adjust training strategies in real time. By simplifying the complex process of building AI models, these platforms enable faster development cycles and more accurate predictive models. Compare and read user reviews of the best AI/ML Model Training platforms for OpenVINO currently available using the table below. This list is updated regularly.

  • 1
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
    Starting Price: Free
  • 2
    PyTorch

    PyTorch

    PyTorch

    Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.
  • 3
    Caffe

    Caffe

    BAIR

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
  • 4
    Intel Open Edge Platform
    The Intel Open Edge Platform simplifies the development, deployment, and scaling of AI and edge computing solutions on standard hardware with cloud-like efficiency. It provides a curated set of components and workflows that accelerate AI model creation, optimization, and application development. From vision models to generative AI and large language models (LLM), the platform offers tools to streamline model training and inference. By integrating Intel’s OpenVINO toolkit, it ensures enhanced performance on Intel CPUs, GPUs, and VPUs, allowing organizations to bring AI applications to the edge with ease.
  • Previous
  • You're on page 1
  • Next