Compare the Top AI/ML Model Training Platforms that integrate with Hugging Face as of October 2025

This a list of AI/ML Model Training platforms that integrate with Hugging Face. Use the filters on the left to add additional filters for products that have integrations with Hugging Face. View the products that work with Hugging Face in the table below.

What are AI/ML Model Training Platforms for Hugging Face?

AI/ML model training platforms are software solutions designed to streamline the development, training, and deployment of machine learning and artificial intelligence models. These platforms provide tools and infrastructure for data preprocessing, model selection, hyperparameter tuning, and training in a variety of domains, such as natural language processing, computer vision, and predictive analytics. They often include features for distributed computing, enabling the use of multiple processors or cloud resources to speed up the training process. Additionally, model training platforms typically offer integrated monitoring and debugging tools to track model performance and adjust training strategies in real time. By simplifying the complex process of building AI models, these platforms enable faster development cycles and more accurate predictive models. Compare and read user reviews of the best AI/ML Model Training platforms for Hugging Face currently available using the table below. This list is updated regularly.

  • 1
    Flyte

    Flyte

    Union.ai

    The workflow automation platform for complex, mission-critical data and ML processes at scale. Flyte makes it easy to create concurrent, scalable, and maintainable workflows for machine learning and data processing. Flyte is used in production at Lyft, Spotify, Freenome, and others. At Lyft, Flyte has been serving production model training and data processing for over four years, becoming the de-facto platform for teams like pricing, locations, ETA, mapping, autonomous, and more. In fact, Flyte manages over 10,000 unique workflows at Lyft, totaling over 1,000,000 executions every month, 20 million tasks, and 40 million containers. Flyte has been battle-tested at Lyft, Spotify, Freenome, and others. It is entirely open-source with an Apache 2.0 license under the Linux Foundation with a cross-industry overseeing committee. Configuring machine learning and data workflows can get complex and error-prone with YAML.
    Starting Price: Free
  • 2
    ML Console

    ML Console

    ML Console

    ​ML Console is a web-based application that enables users to build powerful machine learning models without writing a single line of code. Designed for accessibility, it allows individuals from various backgrounds, including marketing professionals, e-commerce store owners, and larger enterprises, to create AI models in less than a minute. It operates entirely within the user's browser, ensuring that data remains local and secure. By leveraging modern web technologies like WebAssembly and WebGL, ML Console achieves training speeds comparable to traditional Python-based methods. Its user-friendly interface simplifies the machine learning process, making it approachable for users with no advanced AI expertise. Additionally, ML Console is free to use, eliminating barriers to entry for those interested in exploring machine learning solutions. ​
    Starting Price: Free
  • 3
    Nurix

    Nurix

    Nurix

    Nurix AI is a Bengaluru-based company specializing in the development of custom AI agents designed to automate and enhance enterprise workflows across various sectors, including sales and customer support. Nurix AI's platform integrates seamlessly with existing enterprise systems, enabling AI agents to execute complex tasks autonomously, provide real-time responses, and make intelligent decisions without constant human oversight. A standout feature is their proprietary voice-to-voice model, which supports low-latency, human-like conversations in multiple languages, enhancing customer interactions. Nurix AI offers tailored AI services for startups, providing end-to-end solutions to build and scale AI products without the need for extensive in-house teams. Their expertise encompasses large language models, cloud integration, inference, and model training, ensuring that clients receive reliable and enterprise-ready AI solutions.
  • 4
    Amazon SageMaker Model Training
    Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
  • 5
    3LC

    3LC

    3LC

    Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility.
  • 6
    Intel Open Edge Platform
    The Intel Open Edge Platform simplifies the development, deployment, and scaling of AI and edge computing solutions on standard hardware with cloud-like efficiency. It provides a curated set of components and workflows that accelerate AI model creation, optimization, and application development. From vision models to generative AI and large language models (LLM), the platform offers tools to streamline model training and inference. By integrating Intel’s OpenVINO toolkit, it ensures enhanced performance on Intel CPUs, GPUs, and VPUs, allowing organizations to bring AI applications to the edge with ease.
  • 7
    JAX

    JAX

    JAX

    ​JAX is a Python library designed for high-performance numerical computing and machine learning research. It offers a NumPy-like API, facilitating seamless adoption for those familiar with NumPy. Key features of JAX include automatic differentiation, just-in-time compilation, vectorization, and parallelization, all optimized for execution on CPUs, GPUs, and TPUs. These capabilities enable efficient computation for complex mathematical functions and large-scale machine-learning models. JAX also integrates with various libraries within its ecosystem, such as Flax for neural networks and Optax for optimization tasks. Comprehensive documentation, including tutorials and user guides, is available to assist users in leveraging JAX's full potential. ​
  • 8
    01.AI

    01.AI

    01.AI

    01.AI offers a comprehensive AI/ML model deployment platform that simplifies the process of training, deploying, and managing machine learning models at scale. It provides powerful tools for businesses to integrate AI into their operations with minimal technical complexity. 01.AI supports end-to-end AI solutions, including model training, fine-tuning, inference, and monitoring. 01. AI's services help businesses optimize their AI workflows, allowing teams to focus on model performance rather than infrastructure. It is designed to support various industries, including finance, healthcare, and manufacturing, offering scalable solutions that enhance decision-making and automate complex tasks.
  • 9
    Amazon SageMaker Unified Studio
    Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models. Built on Amazon DataZone, it integrates various AWS analytics and AI/ML services, such as Amazon EMR, AWS Glue, and Amazon Bedrock, into a single platform. Users can discover, access, and process data from various sources like Amazon S3 and Redshift, and develop generative AI applications. With tools for model development, governance, MLOps, and AI customization, SageMaker Unified Studio provides an efficient, secure, and collaborative environment for data teams.
  • 10
    TensorWave

    TensorWave

    TensorWave

    TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc.
  • 11
    Centific

    Centific

    Centific

    Centific’s frontier AI data foundry platform, powered by NVIDIA edge computing, is purpose-built to accelerate AI deployments by increasing flexibility, security, and scalability through comprehensive workflow orchestration. It centralizes AI project management in a unified AI Workbench, overseeing pipelines, model training, deployment, and reporting within a single, streamlined environment, while it handles data ingestion, preprocessing, and transformation. RAG Studio simplifies retrieval-augmented generation workflows, the Product Catalog organizes reusable assets, and Safe AI Studio embeds built-in safeguards to ensure compliance, reduce hallucinations, and protect sensitive data. Its plugin-based modular architecture supports both PaaS and SaaS models with metering to monitor consumption, and a centralized model catalog offers version control, compliance checks, and flexible deployment options.
  • Previous
  • You're on page 1
  • Next