Compare the Top AI Memory Layers that integrate with OpenAI as of August 2025

This a list of AI Memory Layers that integrate with OpenAI. Use the filters on the left to add additional filters for products that have integrations with OpenAI. View the products that work with OpenAI in the table below.

What are AI Memory Layers for OpenAI?

AI memory layers refer to specialized components within artificial intelligence architectures that store and retrieve contextual information to improve decision-making and learning. These layers enable models to remember past interactions, patterns, or data points, enhancing continuity and relevance in tasks like natural language processing or reinforcement learning. By incorporating memory layers, AI systems can better handle complex sequences, adapt to new inputs, and maintain state over longer durations. Memory layers can be implemented using techniques such as attention mechanisms, recurrent networks, or external memory modules. This capability is crucial for building more sophisticated, human-like AI that can learn from experience and context over time. Compare and read user reviews of the best AI Memory Layers for OpenAI currently available using the table below. This list is updated regularly.

  • 1
    Weaviate

    Weaviate

    Weaviate

    Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from your favorite ML-models, and scale seamlessly into billions of data objects. Whether you bring your own vectors or use one of the vectorization modules, you can index billions of data objects to search through. Combine multiple search techniques, such as keyword-based and vector search, to provide state-of-the-art search experiences. Improve your search results by piping them through LLM models like GPT-3 to create next-gen search experiences. Beyond search, Weaviate's next-gen vector database can power a wide range of innovative apps. Perform lightning-fast pure vector similarity search over raw vectors or data objects, even with filters. Combine keyword-based search with vector search techniques for state-of-the-art results. Use any generative model in combination with your data, for example to do Q&A over your dataset.
    Starting Price: Free
  • 2
    Cognee

    Cognee

    Cognee

    ​Cognee is an open source AI memory engine that transforms raw data into structured knowledge graphs, enhancing the accuracy and contextual understanding of AI agents. It supports various data types, including unstructured text, media files, PDFs, and tables, and integrates seamlessly with several data sources. Cognee employs modular ECL pipelines to process and organize data, enabling AI agents to retrieve relevant information efficiently. It is compatible with vector and graph databases and supports LLM frameworks like OpenAI, LlamaIndex, and LangChain. Key features include customizable storage options, RDF-based ontologies for smart data structuring, and the ability to run on-premises, ensuring data privacy and compliance. Cognee's distributed system is scalable, capable of handling large volumes of data, and is designed to reduce AI hallucinations by providing AI agents with a coherent and interconnected data landscape.
    Starting Price: $25 per month
  • 3
    Mem0

    Mem0

    Mem0

    Mem0 is a self-improving memory layer designed for Large Language Model (LLM) applications, enabling personalized AI experiences that save costs and delight users. It remembers user preferences, adapts to individual needs, and continuously improves over time. Key features include enhancing future conversations by building smarter AI that learns from every interaction, reducing LLM costs by up to 80% through intelligent data filtering, delivering more accurate and personalized AI outputs by leveraging historical context, and offering easy integration compatible with platforms like OpenAI and Claude. Mem0 is perfect for projects such as customer support, where chatbots remember past interactions to reduce repetition and speed up resolution times; personal AI companions that recall preferences and past conversations for more meaningful interactions; AI agents that learn from each interaction to become more personalized and effective over time.
    Starting Price: $249 per month
  • 4
    Pinecone

    Pinecone

    Pinecone

    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles. Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval. Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results. Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
  • 5
    LlamaIndex

    LlamaIndex

    LlamaIndex

    LlamaIndex is a “data framework” to help you build LLM apps. Connect semi-structured data from API's like Slack, Salesforce, Notion, etc. LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. LlamaIndex provides the key tools to augment your LLM applications with data. Connect your existing data sources and data formats (API's, PDF's, documents, SQL, etc.) to use with a large language model application. Store and index your data for different use cases. Integrate with downstream vector store and database providers. LlamaIndex provides a query interface that accepts any input prompt over your data and returns a knowledge-augmented response. Connect unstructured sources such as documents, raw text files, PDF's, videos, images, etc. Easily integrate structured data sources from Excel, SQL, etc. Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • Previous
  • You're on page 1
  • Next