Compare the Top AI Memory Layers that integrate with GitHub as of December 2025

This a list of AI Memory Layers that integrate with GitHub. Use the filters on the left to add additional filters for products that have integrations with GitHub. View the products that work with GitHub in the table below.

What are AI Memory Layers for GitHub?

AI memory layers refer to specialized components within artificial intelligence architectures that store and retrieve contextual information to improve decision-making and learning. These layers enable models to remember past interactions, patterns, or data points, enhancing continuity and relevance in tasks like natural language processing or reinforcement learning. By incorporating memory layers, AI systems can better handle complex sequences, adapt to new inputs, and maintain state over longer durations. Memory layers can be implemented using techniques such as attention mechanisms, recurrent networks, or external memory modules. This capability is crucial for building more sophisticated, human-like AI that can learn from experience and context over time. Compare and read user reviews of the best AI Memory Layers for GitHub currently available using the table below. This list is updated regularly.

  • 1
    Papr

    Papr

    Papr.ai

    Papr is an AI-native memory and context intelligence platform that provides a predictive memory layer combining vector embeddings with a knowledge graph through a single API, enabling AI systems to store, connect, and retrieve context across conversations, documents, and structured data with high precision. It lets developers add production-ready memory to AI agents and apps with minimal code, maintaining context across interactions and powering assistants that remember user history and preferences. Papr supports ingestion of diverse data including chat, documents, PDFs, and tool data, automatically extracting entities and relationships to build a dynamic memory graph that improves retrieval accuracy and anticipates needs via predictive caching, delivering low latency and state-of-the-art retrieval performance. Papr’s hybrid architecture supports natural language search and GraphQL queries, secure multi-tenant access controls, and dual memory types for user personalization.
    Starting Price: $20 per month
  • 2
    Hyperspell

    Hyperspell

    Hyperspell

    Hyperspell is an end-to-end memory and context layer for AI agents that lets you build data-powered, context-aware applications without managing the underlying pipeline. It ingests data continuously from user-connected sources (e.g., drive, docs, chat, calendar), builds a bespoke memory graph, and maintains context so future queries are informed by past interactions. Hyperspell supports persistent memory, context engineering, and grounded generation, producing structured or LLM-ready summaries from the memory graph. It integrates with your choice of LLM while enforcing security standards and keeping data private and auditable. With one-line integration and pre-built components for authentication and data access, Hyperspell abstracts away the work of indexing, chunking, schema extraction, and memory updates. Over time, it “learns” from interactions; relevant answers reinforce context and improve future performance.
  • Previous
  • You're on page 1
  • Next