Compare the Top AI Infrastructure Platforms that integrate with AWS Lambda as of October 2025

This a list of AI Infrastructure platforms that integrate with AWS Lambda. Use the filters on the left to add additional filters for products that have integrations with AWS Lambda. View the products that work with AWS Lambda in the table below.

What are AI Infrastructure Platforms for AWS Lambda?

An AI infrastructure platform is a system that provides infrastructure, compute, tools, and components for the development, training, testing, deployment, and maintenance of artificial intelligence models and applications. It usually features automated model building pipelines, support for large data sets, integration with popular software development environments, tools for distributed training stacks, and the ability to access cloud APIs. By leveraging such an infrastructure platform, developers can easily create end-to-end solutions where data can be collected efficiently and models can be quickly trained in parallel on distributed hardware. The use of such platforms enables a fast development cycle that helps companies get their products to market quickly. Compare and read user reviews of the best AI Infrastructure platforms for AWS Lambda currently available using the table below. This list is updated regularly.

  • 1
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
    Starting Price: Free
  • 2
    Amazon SageMaker Debugger
    Optimize ML models by capturing training metrics in real-time and sending alerts when anomalies are detected. Automatically stop training processes when the desired accuracy is achieved to reduce the time and cost of training ML models. Automatically profile and monitor system resource utilization and send alerts when resource bottlenecks are identified to continuously improve resource utilization. Amazon SageMaker Debugger can reduce troubleshooting during training from days to minutes by automatically detecting and alerting you to remediate common training errors such as gradient values becoming too large or too small. Alerts can be viewed in Amazon SageMaker Studio or configured through Amazon CloudWatch. Additionally, the SageMaker Debugger SDK enables you to automatically detect new classes of model-specific errors such as data sampling, hyperparameter values, and out-of-bound values.
  • Previous
  • You're on page 1
  • Next