Compare the Top AI Infrastructure Platforms in Australia as of February 2025 - Page 3

  • 1
    Nscale

    Nscale

    Nscale

    Nscale is the Hyperscaler engineered for AI, offering high-performance computing optimized for training, fine-tuning, and intensive workloads. From our data centers to our software stack, we are vertically integrated in Europe to provide unparalleled performance, efficiency, and sustainability. Access thousands of GPUs tailored to your requirements using our AI cloud platform. Reduce costs, grow revenue, and run your AI workloads more efficiently on a fully integrated platform. Whether you're using Nscale's built-in AI/ML tools or your own, our platform is designed to simplify the journey from development to production. The Nscale Marketplace offers users access to various AI/ML tools and resources, enabling efficient and scalable model development and deployment. Serverless allows seamless, scalable AI inference without the need to manage infrastructure. It automatically scales to meet demand, ensuring low latency and cost-effective inference for popular generative AI models.
  • 2
    Hyperbolic

    Hyperbolic

    Hyperbolic

    Hyperbolic is an open-access AI cloud platform dedicated to democratizing artificial intelligence by providing affordable and scalable GPU resources and AI services. By uniting global compute power, Hyperbolic enables companies, researchers, data centers, and individuals to access and monetize GPU resources at a fraction of the cost offered by traditional cloud providers. Their mission is to foster a collaborative AI ecosystem where innovation thrives without the constraints of high computational expenses.
    Starting Price: $0.50/hour
  • 3
    Humiris AI

    Humiris AI

    Humiris AI

    Humiris AI is a next-generation AI infrastructure platform that enables developers to build advanced applications by integrating multiple Large Language Models (LLMs). It offers a multi-LLM routing and reasoning layer, allowing users to optimize generative AI workflows with a flexible, scalable infrastructure. Humiris AI supports various use cases, including chatbot development, fine-tuning multiple LLMs simultaneously, retrieval-augmented generation, building super reasoning agents, advanced data analysis, and code generation. The platform's unique data format adapts to all foundation models, facilitating seamless integration and optimization. To get started, users can register for an account, create a project, add LLM provider API keys, and define parameters to generate a mixed model tailored to their specific needs. It allows deployment on users' own infrastructure, ensuring full data sovereignty and compliance with internal and external regulations.
  • 4
    Krutrim Cloud
    Ola Krutrim is an AI-driven platform offering a comprehensive suite of services designed to advance artificial intelligence applications across various sectors. Their offerings include scalable cloud infrastructure, AI model deployment, and India's first domestically designed AI chips. The platform supports AI workloads with GPU acceleration, enabling efficient training and inference processes. Additionally, Ola Krutrim provides AI-enhanced mapping solutions, seamless language translation services, and AI-powered customer support chatbots. Our AI studio allows users to deploy cutting-edge AI models effortlessly, while the Language Hub offers translation, transliteration, and speech-to-text conversion capabilities. Ola Krutrim's mission is to empower India's 1.4 billion+ consumers, developers, entrepreneurs, and enterprises by putting the power of AI in their hands.
  • 5
    NVIDIA NIM
    Explore the latest optimized AI models, connect AI agents to data with NVIDIA NeMo, and deploy anywhere with NVIDIA NIM microservices. NVIDIA NIM is a set of easy-to-use inference microservices that facilitate the deployment of foundation models across any cloud or data center, ensuring data security and streamlined AI integration. Additionally, NVIDIA AI provides access to the Deep Learning Institute (DLI), offering technical training to gain in-demand skills, hands-on experience, and expert knowledge in AI, data science, and accelerated computing. AI models generate responses and outputs based on complex algorithms and machine learning techniques, and those responses or outputs may be inaccurate, harmful, biased, or indecent. By testing this model, you assume the risk of any harm caused by any response or output of the model. Please do not upload any confidential information or personal data unless expressly permitted. Your use is logged for security purposes.
  • 6
    NVIDIA NGC
    NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI.
  • 7
    DataRobot

    DataRobot

    DataRobot

    AI Cloud is a new approach built for the demands, challenges and opportunities of AI today. A single system of record, accelerating the delivery of AI to production for every organization. All users collaborate in a unified environment built for continuous optimization across the entire AI lifecycle. The AI Catalog enables seamlessly finding, sharing, tagging, and reusing data, helping to speed time to production and increase collaboration. The catalog provides easy access to the data needed to answer a business problem while ensuring security, compliance, and consistency. If your database is protected by a network policy that only allows connections from specific IP addresses, contact Support for a list of addresses that an administrator must add to your network policy (whitelist).
  • 8
    Run:AI

    Run:AI

    Run:AI

    Virtualization Software for AI Infrastructure. Gain visibility and control over AI workloads to increase GPU utilization. Run:AI has built the world’s first virtualization layer for deep learning training models. By abstracting workloads from underlying infrastructure, Run:AI creates a shared pool of resources that can be dynamically provisioned, enabling full utilization of expensive GPU resources. Gain control over the allocation of expensive GPU resources. Run:AI’s scheduling mechanism enables IT to control, prioritize and align data science computing needs with business goals. Using Run:AI’s advanced monitoring tools, queueing mechanisms, and automatic preemption of jobs based on priorities, IT gains full control over GPU utilization. By creating a flexible ‘virtual pool’ of compute resources, IT leaders can visualize their full infrastructure capacity and utilization across sites, whether on premises or in the cloud.
  • 9
    IBM Cloud Pak for Watson AIOps
    Discover how to start your AIOps journey and transform your IT operations with IBM Cloud Pak for Watson AIOps. IBM Cloud Pak® for Watson AIOps is an AIOps platform that deploys advanced, explainable AI across the ITOps toolchain so you can confidently assess, diagnose and resolve incidents across mission-critical workloads. If you’re looking for IBM Netcool® Operations Insight or any previous IBM IT management offerings, IBM Cloud Pak for Watson AIOps is the evolution of your current entitlement. Correlate across all relevant data sources. Detect hidden anomalies, anticipate issues and resolve faster. Proactively avoid risks and automate runbooks for more efficient workflows. Correlate a vast amount of unstructured and structured data in real-time with AIOps tools. Keep teams focused, surfacing insights and recommendations into existing workflows. Build policy at the microservice level and automate across application components.
  • 10
    OctoAI

    OctoAI

    OctoML

    OctoAI is world-class compute infrastructure for tuning and running models that wow your users. Fast, efficient model endpoints and the freedom to run any model. Leverage OctoAI’s accelerated models or bring your own from anywhere. Create ergonomic model endpoints in minutes, with only a few lines of code. Customize your model to fit any use case that serves your users. Go from zero to millions of users, never worrying about hardware, speed, or cost overruns. Tap into our curated list of best-in-class open-source foundation models that we’ve made faster and cheaper to run using our deep experience in machine learning compilation, acceleration techniques, and proprietary model-hardware performance technology. OctoAI automatically selects the optimal hardware target, applies the latest optimization technologies, and always keeps your running models in an optimal manner.
  • 11
    NVIDIA RAPIDS
    The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes. Accelerate your Python data science toolchain with minimal code changes and no new tools to learn. Increase machine learning model accuracy by iterating on models faster and deploying them more frequently.
  • 12
    NeoPulse

    NeoPulse

    AI Dynamics

    The NeoPulse Product Suite includes everything needed for a company to start building custom AI solutions based on their own curated data. Server application with a powerful AI called “the oracle” that is capable of automating the process of creating sophisticated AI models. Manages your AI infrastructure and orchestrates workflows to automate AI generation activities. A program that is licensed by the organization to allow any application in the enterprise to access the AI model using a web-based (REST) API. NeoPulse is an end-to-end automated AI platform that enables organizations to train, deploy and manage AI solutions in heterogeneous environments, at scale. In other words, every part of the AI engineering workflow can be handled by NeoPulse: designing, training, deploying, managing and retiring.
  • 13
    Pixis

    Pixis

    Pixis

    Establish a powerful AI blueprint to make marketing effortlessly intelligent, agile and scalable. Orchestrate data-driven actions across your marketing efforts with the world’s only hyper-contextual AI infrastructure. Discover flexible AI models trained on diverse datasets across multiple siloes that cater to the broadest use cases. Trained on 3B+ cross-industry data points, the infrastructure houses models that need no training and churns efficiency out-of-the-box. Leverage our proven algorithms or build customized rule-based strategies with our easy-to-use UI. Enhance your campaigns across platforms with the best strategies tailor-made based on dozens of parameters. Leverage self-evolving AI models that inform and interact with one another to perform at the highest level of efficiencies. Access dedicated artificial intelligence systems that constantly learn, communicate and optimize your marketing efficiency.
  • 14
    NVIDIA DGX Cloud
    The world’s first AI supercomputer in the cloud, NVIDIA DGX™ Cloud is an AI-training-as-a-service solution with integrated DGX infrastructure designed for the unique demands of enterprise AI. Access NVIDIA DGX Cloud to experience a combined software and infrastructure solution for AI training that includes a full-stack AI developer suite, leadership-class infrastructure, and concierge support, allowing businesses to get started immediately with predictable, all-in-one pricing.
  • 15
    NVIDIA Base Command
    NVIDIA Base Command™ is a software service for enterprise-class AI training that enables businesses and their data scientists to accelerate AI development. Part of the NVIDIA DGX™ platform, Base Command Platform provides centralized, hybrid control of AI training projects. It works with NVIDIA DGX Cloud and NVIDIA DGX SuperPOD. Base Command Platform, in combination with NVIDIA-accelerated AI infrastructure, provides a cloud-hosted solution for AI development, so users can avoid the overhead and pitfalls of deploying and running a do-it-yourself platform. Base Command Platform efficiently configures and manages AI workloads, delivers integrated dataset management, and executes them on right-sized resources ranging from a single GPU to large-scale, multi-node clusters in the cloud or on-premises. Because NVIDIA’s own engineers and researchers rely on it every day, the platform receives continuous software enhancements.
  • 16
    NVIDIA AI Enterprise
    The software layer of the NVIDIA AI platform, NVIDIA AI Enterprise accelerates the data science pipeline and streamlines development and deployment of production AI including generative AI, computer vision, speech AI and more. With over 50 frameworks, pretrained models and development tools, NVIDIA AI Enterprise is designed to accelerate enterprises to the leading edge of AI, while also simplifying AI to make it accessible to every enterprise. The adoption of artificial intelligence and machine learning has gone mainstream, and is core to nearly every company’s competitive strategy. One of the toughest challenges for enterprises is the struggle with siloed infrastructure across the cloud and on-premises data centers. AI requires their environments to be managed as a common platform, instead of islands of compute.
  • 17
    NVIDIA Picasso
    NVIDIA Picasso is a cloud service for building generative AI–powered visual applications. Enterprises, software creators, and service providers can run inference on their models, train NVIDIA Edify foundation models on proprietary data, or start from pre-trained models to generate image, video, and 3D content from text prompts. Picasso service is fully optimized for GPUs and streamlines training, optimization, and inference on NVIDIA DGX Cloud. Organizations and developers can train NVIDIA’s Edify models on their proprietary data or get started with models pre-trained with our premier partners. Expert denoising network to generate photorealistic 4K images. Temporal layers and novel video denoiser generate high-fidelity videos with temporal consistency. A novel optimization framework for generating 3D objects and meshes with high-quality geometry. Cloud service for building and deploying generative AI-powered image, video, and 3D applications.
  • 18
    Amazon SageMaker Debugger
    Optimize ML models by capturing training metrics in real-time and sending alerts when anomalies are detected. Automatically stop training processes when the desired accuracy is achieved to reduce the time and cost of training ML models. Automatically profile and monitor system resource utilization and send alerts when resource bottlenecks are identified to continuously improve resource utilization. Amazon SageMaker Debugger can reduce troubleshooting during training from days to minutes by automatically detecting and alerting you to remediate common training errors such as gradient values becoming too large or too small. Alerts can be viewed in Amazon SageMaker Studio or configured through Amazon CloudWatch. Additionally, the SageMaker Debugger SDK enables you to automatically detect new classes of model-specific errors such as data sampling, hyperparameter values, and out-of-bound values.
  • 19
    Amazon SageMaker Model Training
    Amazon SageMaker Model Training reduces the time and cost to train and tune machine learning (ML) models at scale without the need to manage infrastructure. You can take advantage of the highest-performing ML compute infrastructure currently available, and SageMaker can automatically scale infrastructure up or down, from one to thousands of GPUs. Since you pay only for what you use, you can manage your training costs more effectively. To train deep learning models faster, SageMaker distributed training libraries can automatically split large models and training datasets across AWS GPU instances, or you can use third-party libraries, such as DeepSpeed, Horovod, or Megatron. Efficiently manage system resources with a wide choice of GPUs and CPUs including P4d.24xl instances, which are the fastest training instances currently available in the cloud. Specify the location of data, indicate the type of SageMaker instances, and get started with a single click.
  • 20
    Amazon SageMaker Model Building
    Amazon SageMaker provides all the tools and libraries you need to build ML models, the process of iteratively trying different algorithms and evaluating their accuracy to find the best one for your use case. In Amazon SageMaker you can pick different algorithms, including over 15 that are built-in and optimized for SageMaker, and use over 150 pre-built models from popular model zoos available with a few clicks. SageMaker also offers a variety of model-building tools including Amazon SageMaker Studio Notebooks and RStudio where you can run ML models on a small scale to see results and view reports on their performance so you can come up with high-quality working prototypes. Amazon SageMaker Studio Notebooks help you build ML models faster and collaborate with your team. Amazon SageMaker Studio notebooks provide one-click Jupyter notebooks that you can start working within seconds. Amazon SageMaker also enables one-click sharing of notebooks.
  • 21
    Amazon SageMaker Studio Lab
    Amazon SageMaker Studio Lab is a free machine learning (ML) development environment that provides the compute, storage (up to 15GB), and security, all at no cost, for anyone to learn and experiment with ML. All you need to get started is a valid email address, you don’t need to configure infrastructure or manage identity and access or even sign up for an AWS account. SageMaker Studio Lab accelerates model building through GitHub integration, and it comes preconfigured with the most popular ML tools, frameworks, and libraries to get you started immediately. SageMaker Studio Lab automatically saves your work so you don’t need to restart in between sessions. It’s as easy as closing your laptop and coming back later. Free machine learning development environment that provides the computing, storage, and security to learn and experiment with ML. GitHub integration and preconfigured with the most popular ML tools, frameworks, and libraries so you can get started immediately.
  • 22
    AWS Inferentia
    AWS Inferentia accelerators are designed by AWS to deliver high performance at the lowest cost for your deep learning (DL) inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, which deliver up to 2.3x higher throughput and up to 70% lower cost per inference than comparable GPU-based Amazon EC2 instances. Many customers, including Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have adopted Inf1 instances and realized its performance and cost benefits. The first-generation Inferentia has 8 GB of DDR4 memory per accelerator and also features a large amount of on-chip memory. Inferentia2 offers 32 GB of HBM2e per accelerator, increasing the total memory by 4x and memory bandwidth by 10x over Inferentia.
  • 23
    AWS Deep Learning AMIs
    AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
  • 24
    Amazon SageMaker Edge
    The SageMaker Edge Agent allows you to capture data and metadata based on triggers that you set so that you can retrain your existing models with real-world data or build new models. Additionally, this data can be used to conduct your own analysis, such as model drift analysis. We offer three options for deployment. GGv2 (~ size 100MB) is a fully integrated AWS IoT deployment mechanism. For those customers with a limited device capacity, we have a smaller built-in deployment mechanism within SageMaker Edge. For customers who have a preferred deployment mechanism, we support third party mechanisms that can be plugged into our user flow. Amazon SageMaker Edge Manager provides a dashboard so you can understand the performance of models running on each device across your fleet. The dashboard helps you visually understand overall fleet health and identify the problematic models through a dashboard in the console.
  • 25
    Amazon SageMaker Clarify
    Amazon SageMaker Clarify provides machine learning (ML) developers with purpose-built tools to gain greater insights into their ML training data and models. SageMaker Clarify detects and measures potential bias using a variety of metrics so that ML developers can address potential bias and explain model predictions. SageMaker Clarify can detect potential bias during data preparation, after model training, and in your deployed model. For instance, you can check for bias related to age in your dataset or in your trained model and receive a detailed report that quantifies different types of potential bias. SageMaker Clarify also includes feature importance scores that help you explain how your model makes predictions and produces explainability reports in bulk or real time through online explainability. You can use these reports to support customer or internal presentations or to identify potential issues with your model.
  • 26
    Amazon SageMaker JumpStart
    Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. With SageMaker JumpStart, you can access built-in algorithms with pretrained models from model hubs, pretrained foundation models to help you perform tasks such as article summarization and image generation, and prebuilt solutions to solve common use cases. In addition, you can share ML artifacts, including ML models and notebooks, within your organization to accelerate ML model building and deployment. SageMaker JumpStart provides hundreds of built-in algorithms with pretrained models from model hubs, including TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. You can also access built-in algorithms using the SageMaker Python SDK. Built-in algorithms cover common ML tasks, such as data classifications (image, text, tabular) and sentiment analysis.
  • 27
    Amazon SageMaker Autopilot
    Amazon SageMaker Autopilot eliminates the heavy lifting of building ML models. You simply provide a tabular dataset and select the target column to predict, and SageMaker Autopilot will automatically explore different solutions to find the best model. You then can directly deploy the model to production with just one click or iterate on the recommended solutions to further improve the model quality. You can use Amazon SageMaker Autopilot even when you have missing data. SageMaker Autopilot automatically fills in the missing data, provides statistical insights about columns in your dataset, and automatically extracts information from non-numeric columns, such as date and time information from timestamps.
  • 28
    Amazon SageMaker Model Deployment
    Amazon SageMaker makes it easy to deploy ML models to make predictions (also known as inference) at the best price-performance for any use case. It provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference needs. It is a fully managed service and integrates with MLOps tools, so you can scale your model deployment, reduce inference costs, manage models more effectively in production, and reduce operational burden. From low latency (a few milliseconds) and high throughput (hundreds of thousands of requests per second) to long-running inference for use cases such as natural language processing and computer vision, you can use Amazon SageMaker for all your inference needs.
  • 29
    MosaicML

    MosaicML

    MosaicML

    Train and serve large AI models at scale with a single command. Point to your S3 bucket and go. We handle the rest, orchestration, efficiency, node failures, and infrastructure. Simple and scalable. MosaicML enables you to easily train and deploy large AI models on your data, in your secure environment. Stay on the cutting edge with our latest recipes, techniques, and foundation models. Developed and rigorously tested by our research team. With a few simple steps, deploy inside your private cloud. Your data and models never leave your firewalls. Start in one cloud, and continue on another, without skipping a beat. Own the model that's trained on your own data. Introspect and better explain the model decisions. Filter the content and data based on your business needs. Seamlessly integrate with your existing data pipelines, experiment trackers, and other tools. We are fully interoperable, cloud-agnostic, and enterprise proved.
  • 30
    AWS Neuron

    AWS Neuron

    Amazon Web Services

    It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).