Compare the Top AI Inference Platforms that integrate with Vertex AI as of October 2025

This a list of AI Inference platforms that integrate with Vertex AI. Use the filters on the left to add additional filters for products that have integrations with Vertex AI. View the products that work with Vertex AI in the table below.

What are AI Inference Platforms for Vertex AI?

AI inference platforms enable the deployment, optimization, and real-time execution of machine learning models in production environments. These platforms streamline the process of converting trained models into actionable insights by providing scalable, low-latency inference services. They support multiple frameworks, hardware accelerators (like GPUs, TPUs, and specialized AI chips), and offer features such as batch processing and model versioning. Many platforms also prioritize cost-efficiency, energy savings, and simplified API integrations for seamless model deployment. By leveraging AI inference platforms, organizations can accelerate AI-driven decision-making in applications like computer vision, natural language processing, and predictive analytics. Compare and read user reviews of the best AI Inference platforms for Vertex AI currently available using the table below. This list is updated regularly.

  • 1
    Google AI Studio
    AI inference in Google AI Studio allows businesses to leverage trained models to make real-time predictions or decisions based on new, incoming data. This process is critical for deploying AI applications in production, such as recommendation systems, fraud detection tools, or intelligent chatbots that respond to user inputs. Google AI Studio optimizes the inference process to ensure that predictions are both fast and accurate, even when dealing with large-scale data. With built-in tools for model monitoring and performance tracking, users can ensure that their AI applications continue to deliver reliable results over time, even as data evolves.
    Starting Price: Free
    View Platform
    Visit Website
  • 2
    NVIDIA Triton Inference Server
    NVIDIA Triton™ inference server delivers fast and scalable AI in production. Open-source inference serving software, Triton inference server streamlines AI inference by enabling teams deploy trained AI models from any framework (TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, custom and more on any GPU- or CPU-based infrastructure (cloud, data center, or edge). Triton runs models concurrently on GPUs to maximize throughput and utilization, supports x86 and ARM CPU-based inferencing, and offers features like dynamic batching, model analyzer, model ensemble, and audio streaming. Triton helps developers deliver high-performance inference aTriton integrates with Kubernetes for orchestration and scaling, exports Prometheus metrics for monitoring, supports live model updates, and can be used in all major public cloud machine learning (ML) and managed Kubernetes platforms. Triton helps standardize model deployment in production.
    Starting Price: Free
  • 3
    Athina AI

    Athina AI

    Athina AI

    Athina is a collaborative AI development platform that enables teams to build, test, and monitor AI applications efficiently. It offers features such as prompt management, evaluation tools, dataset handling, and observability, all designed to streamline the development of reliable AI systems. Athina supports integration with various models and services, including custom models, and ensures data privacy through fine-grained access controls and self-hosted deployment options. The platform is SOC-2 Type 2 compliant, providing a secure environment for AI development. Athina's user-friendly interface allows both technical and non-technical team members to collaborate effectively, accelerating the deployment of AI features.
    Starting Price: Free
  • 4
    Google Cloud AI Infrastructure
    Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
  • Previous
  • You're on page 1
  • Next