Compare the Top AI Inference Platforms that integrate with KServe as of June 2025

This a list of AI Inference platforms that integrate with KServe. Use the filters on the left to add additional filters for products that have integrations with KServe. View the products that work with KServe in the table below.

What are AI Inference Platforms for KServe?

AI inference platforms enable the deployment, optimization, and real-time execution of machine learning models in production environments. These platforms streamline the process of converting trained models into actionable insights by providing scalable, low-latency inference services. They support multiple frameworks, hardware accelerators (like GPUs, TPUs, and specialized AI chips), and offer features such as batch processing and model versioning. Many platforms also prioritize cost-efficiency, energy savings, and simplified API integrations for seamless model deployment. By leveraging AI inference platforms, organizations can accelerate AI-driven decision-making in applications like computer vision, natural language processing, and predictive analytics. Compare and read user reviews of the best AI Inference platforms for KServe currently available using the table below. This list is updated regularly.

  • 1
    VLLM

    VLLM

    VLLM

    VLLM is a high-performance library designed to facilitate efficient inference and serving of Large Language Models (LLMs). Originally developed in the Sky Computing Lab at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry. It offers state-of-the-art serving throughput by efficiently managing attention key and value memory through its PagedAttention mechanism. It supports continuous batching of incoming requests and utilizes optimized CUDA kernels, including integration with FlashAttention and FlashInfer, to enhance model execution speed. Additionally, vLLM provides quantization support for GPTQ, AWQ, INT4, INT8, and FP8, as well as speculative decoding capabilities. Users benefit from seamless integration with popular Hugging Face models, support for various decoding algorithms such as parallel sampling and beam search, and compatibility with NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, and more.
  • Previous
  • You're on page 1
  • Next