Compare the Top AI Inference Platforms that integrate with Hugging Face as of September 2025

This a list of AI Inference platforms that integrate with Hugging Face. Use the filters on the left to add additional filters for products that have integrations with Hugging Face. View the products that work with Hugging Face in the table below.

What are AI Inference Platforms for Hugging Face?

AI inference platforms enable the deployment, optimization, and real-time execution of machine learning models in production environments. These platforms streamline the process of converting trained models into actionable insights by providing scalable, low-latency inference services. They support multiple frameworks, hardware accelerators (like GPUs, TPUs, and specialized AI chips), and offer features such as batch processing and model versioning. Many platforms also prioritize cost-efficiency, energy savings, and simplified API integrations for seamless model deployment. By leveraging AI inference platforms, organizations can accelerate AI-driven decision-making in applications like computer vision, natural language processing, and predictive analytics. Compare and read user reviews of the best AI Inference platforms for Hugging Face currently available using the table below. This list is updated regularly.

  • 1
    OpenVINO
    The Intel® Distribution of OpenVINO™ toolkit is an open-source AI development toolkit that accelerates inference across Intel hardware platforms. Designed to streamline AI workflows, it allows developers to deploy optimized deep learning models for computer vision, generative AI, and large language models (LLMs). With built-in tools for model optimization, the platform ensures high throughput and lower latency, reducing model footprint without compromising accuracy. OpenVINO™ is perfect for developers looking to deploy AI across a range of environments, from edge devices to cloud servers, ensuring scalability and performance across Intel architectures.
    Starting Price: Free
  • 2
    Lamini

    Lamini

    Lamini

    Lamini makes it possible for enterprises to turn proprietary data into the next generation of LLM capabilities, by offering a platform for in-house software teams to uplevel to OpenAI-level AI teams and to build within the security of their existing infrastructure. Guaranteed structured output with optimized JSON decoding. Photographic memory through retrieval-augmented fine-tuning. Improve accuracy, and dramatically reduce hallucinations. Highly parallelized inference for large batch inference. Parameter-efficient finetuning that scales to millions of production adapters. Lamini is the only company that enables enterprise companies to safely and quickly develop and control their own LLMs anywhere. It brings several of the latest technologies and research to bear that was able to make ChatGPT from GPT-3, as well as Github Copilot from Codex. These include, among others, fine-tuning, RLHF, retrieval-augmented training, data augmentation, and GPU optimization.
    Starting Price: $99 per month
  • 3
    Msty

    Msty

    Msty

    Chat with any AI model in a single click. No prior model setup experience is needed. Msty is designed to function seamlessly offline, ensuring reliability and privacy. For added flexibility, it also supports popular online model vendors, giving you the best of both worlds. Revolutionize your research with split chats. Compare and contrast multiple AI models' responses in real time, streamlining your workflow and uncovering new insights. Msty puts you in the driver's seat. Take your conversations wherever you want, and stop whenever you're satisfied. Replace an existing answer or create and iterate through several conversation branches. Delete branches that don't sound quite right. With delve mode, every response becomes a gateway to new knowledge, waiting to be discovered. Click on a keyword, and embark on a journey of discovery. Leverage Msty's split chat feature to move your desired conversation branches into a new split chat or a new chat session.
    Starting Price: $50 per year
  • 4
    NVIDIA TensorRT
    NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.
    Starting Price: Free
  • 5
    Pruna AI

    Pruna AI

    Pruna AI

    Pruna uses generative AI to enable companies to produce professional-grade visual content quickly and affordably. By eliminating the traditional need for studios and manual editing, it empowers brands to create consistent, customized images for advertising, product displays, and digital campaigns with minimal effort.
    Starting Price: $0.40 per runtime hour
  • 6
    FriendliAI

    FriendliAI

    FriendliAI

    FriendliAI is a generative AI infrastructure platform that offers fast, efficient, and reliable inference solutions for production environments. It provides a suite of tools and services designed to optimize the deployment and serving of large language models (LLMs) and other generative AI workloads at scale. Key offerings include Friendli Endpoints, which allow users to build and serve custom generative AI models, saving GPU costs and accelerating AI inference. It supports seamless integration with popular open source models from the Hugging Face Hub, enabling lightning-fast, high-performance inference. FriendliAI's cutting-edge technologies, such as Iteration Batching, Friendli DNN Library, Friendli TCache, and Native Quantization, contribute to significant cost savings (50–90%), reduced GPU requirements (6× fewer GPUs), higher throughput (10.7×), and lower latency (6.2×).
    Starting Price: $5.9 per hour
  • 7
    Pinecone

    Pinecone

    Pinecone

    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles. Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval. Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results. Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
  • 8
    Synexa

    Synexa

    Synexa

    ​Synexa AI enables users to deploy AI models with a single line of code, offering a simple, fast, and stable solution. It supports various functionalities, including image and video generation, image restoration, image captioning, model fine-tuning, and speech generation. Synexa provides access to over 100 production-ready AI models, such as FLUX Pro, Ideogram v2, and Hunyuan Video, with new models added weekly and zero setup required. Synexa's optimized inference engine delivers up to 4x faster performance on diffusion models, achieving sub-second generation times with FLUX and other popular models. Developers can integrate AI capabilities in minutes using intuitive SDKs and comprehensive API documentation, with support for Python, JavaScript, and REST API. Synexa offers enterprise-grade GPU infrastructure with A100s and H100s across three continents, ensuring sub-100ms latency with smart routing and a 99.9% uptime guarantee.
    Starting Price: $0.0125 per image
  • 9
    Steamship

    Steamship

    Steamship

    Ship AI faster with managed, cloud-hosted AI packages. Full, built-in support for GPT-4. No API tokens are necessary. Build with our low code framework. Integrations with all major models are built-in. Deploy for an instant API. Scale and share without managing infrastructure. Turn prompts, prompt chains, and basic Python into a managed API. Turn a clever prompt into a published API you can share. Add logic and routing smarts with Python. Steamship connects to your favorite models and services so that you don't have to learn a new API for every provider. Steamship persists in model output in a standardized format. Consolidate training, inference, vector search, and endpoint hosting. Import, transcribe, or generate text. Run all the models you want on it. Query across the results with ShipQL. Packages are full-stack, cloud-hosted AI apps. Each instance you create provides an API and private data workspace.
  • 10
    SuperDuperDB

    SuperDuperDB

    SuperDuperDB

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, and HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Deploy all your AI models to automatically compute outputs (inference) in your datastore in a single environment with simple Python commands.
  • 11
    LM Studio

    LM Studio

    LM Studio

    Use models through the in-app Chat UI or an OpenAI-compatible local server. Minimum requirements: M1/M2/M3 Mac, or a Windows PC with a processor that supports AVX2. Linux is available in beta. One of the main reasons for using a local LLM is privacy, and LM Studio is designed for that. Your data remains private and local to your machine. You can use LLMs you load within LM Studio via an API server running on localhost.
  • 12
    Outspeed

    Outspeed

    Outspeed

    Outspeed provides networking and inference infrastructure to build fast, real-time voice and video AI apps. AI-powered speech recognition, natural language processing, and text-to-speech for intelligent voice assistants, automated transcription, and voice-controlled systems. Create interactive digital characters for virtual hosts, AI tutors, or customer service. Enable real-time animation and natural conversations for engaging digital interactions. Real-time visual AI for quality control, surveillance, touchless interactions, and medical imaging analysis. Process and analyze video streams and images with high speed and accuracy. AI-driven content generation for creating vast, detailed digital worlds efficiently. Ideal for game environments, architectural visualizations, and virtual reality experiences. Create custom multimodal AI solutions with Adapt's flexible SDK and infrastructure. Combine AI models, data sources, and interaction modes for innovative applications.
  • 13
    Simplismart

    Simplismart

    Simplismart

    Fine-tune and deploy AI models with Simplismart's fastest inference engine. Integrate with AWS/Azure/GCP and many more cloud providers for simple, scalable, cost-effective deployment. Import open source models from popular online repositories or deploy your own custom model. Leverage your own cloud resources or let Simplismart host your model. With Simplismart, you can go far beyond AI model deployment. You can train, deploy, and observe any ML model and realize increased inference speeds at lower costs. Import any dataset and fine-tune open-source or custom models rapidly. Run multiple training experiments in parallel efficiently to speed up your workflow. Deploy any model on our endpoints or your own VPC/premise and see greater performance at lower costs. Streamlined and intuitive deployment is now a reality. Monitor GPU utilization and all your node clusters in one dashboard. Detect any resource constraints and model inefficiencies on the go.
  • 14
    Undrstnd

    Undrstnd

    Undrstnd

    ​Undrstnd Developers empowers developers and businesses to build AI-powered applications with just four lines of code. Experience incredibly fast AI inference times, up to 20 times faster than GPT-4 and other leading models. Our cost-effective AI services are designed to be up to 70 times cheaper than traditional providers like OpenAI. Upload your own datasets and train models in under a minute with our easy-to-use data source feature. Choose from a variety of open source Large Language Models (LLMs) to fit your specific needs, all backed by powerful, flexible APIs. Our platform offers a range of integration options to make it easy for developers to incorporate our AI-powered solutions into their applications, including RESTful APIs and SDKs for popular programming languages like Python, Java, and JavaScript. Whether you're building a web application, a mobile app, or an IoT device, our platform provides the tools and resources you need to integrate our AI-powered solutions seamlessly.
  • 15
    VLLM

    VLLM

    VLLM

    VLLM is a high-performance library designed to facilitate efficient inference and serving of Large Language Models (LLMs). Originally developed in the Sky Computing Lab at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry. It offers state-of-the-art serving throughput by efficiently managing attention key and value memory through its PagedAttention mechanism. It supports continuous batching of incoming requests and utilizes optimized CUDA kernels, including integration with FlashAttention and FlashInfer, to enhance model execution speed. Additionally, vLLM provides quantization support for GPTQ, AWQ, INT4, INT8, and FP8, as well as speculative decoding capabilities. Users benefit from seamless integration with popular Hugging Face models, support for various decoding algorithms such as parallel sampling and beam search, and compatibility with NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, and more.
  • 16
    Intel Open Edge Platform
    The Intel Open Edge Platform simplifies the development, deployment, and scaling of AI and edge computing solutions on standard hardware with cloud-like efficiency. It provides a curated set of components and workflows that accelerate AI model creation, optimization, and application development. From vision models to generative AI and large language models (LLM), the platform offers tools to streamline model training and inference. By integrating Intel’s OpenVINO toolkit, it ensures enhanced performance on Intel CPUs, GPUs, and VPUs, allowing organizations to bring AI applications to the edge with ease.
  • 17
    01.AI

    01.AI

    01.AI

    01.AI offers a comprehensive AI/ML model deployment platform that simplifies the process of training, deploying, and managing machine learning models at scale. It provides powerful tools for businesses to integrate AI into their operations with minimal technical complexity. 01.AI supports end-to-end AI solutions, including model training, fine-tuning, inference, and monitoring. 01. AI's services help businesses optimize their AI workflows, allowing teams to focus on model performance rather than infrastructure. It is designed to support various industries, including finance, healthcare, and manufacturing, offering scalable solutions that enhance decision-making and automate complex tasks.
  • 18
    TensorWave

    TensorWave

    TensorWave

    TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc.
  • 19
    Qualcomm Cloud AI SDK
    The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.
  • Previous
  • You're on page 1
  • Next