Best AI Inference Platforms - Page 2

Compare the Top AI Inference Platforms as of August 2025 - Page 2

  • 1
    WebLLM

    WebLLM

    WebLLM

    WebLLM is a high-performance, in-browser language model inference engine that leverages WebGPU for hardware acceleration, enabling powerful LLM operations directly within web browsers without server-side processing. It offers full OpenAI API compatibility, allowing seamless integration with functionalities such as JSON mode, function-calling, and streaming. WebLLM natively supports a range of models, including Llama, Phi, Gemma, RedPajama, Mistral, and Qwen, making it versatile for various AI tasks. Users can easily integrate and deploy custom models in MLC format, adapting WebLLM to specific needs and scenarios. The platform facilitates plug-and-play integration through package managers like NPM and Yarn, or directly via CDN, complemented by comprehensive examples and a modular design for connecting with UI components. It supports streaming chat completions for real-time output generation, enhancing interactive applications like chatbots and virtual assistants.
    Starting Price: Free
  • 2
    NVIDIA TensorRT
    NVIDIA TensorRT is an ecosystem of APIs for high-performance deep learning inference, encompassing an inference runtime and model optimizations that deliver low latency and high throughput for production applications. Built on the CUDA parallel programming model, TensorRT optimizes neural network models trained on all major frameworks, calibrating them for lower precision with high accuracy, and deploying them across hyperscale data centers, workstations, laptops, and edge devices. It employs techniques such as quantization, layer and tensor fusion, and kernel tuning on all types of NVIDIA GPUs, from edge devices to PCs to data centers. The ecosystem includes TensorRT-LLM, an open source library that accelerates and optimizes inference performance of recent large language models on the NVIDIA AI platform, enabling developers to experiment with new LLMs for high performance and quick customization through a simplified Python API.
    Starting Price: Free
  • 3
    E2B

    E2B

    E2B

    E2B is an open source runtime designed to securely execute AI-generated code within isolated cloud sandboxes. It enables developers to integrate code interpretation capabilities into their AI applications and agents, facilitating the execution of dynamic code snippets in a controlled environment. The platform supports multiple programming languages, including Python and JavaScript, and offers SDKs for seamless integration. E2B utilizes Firecracker microVMs to ensure robust security and isolation for code execution. Developers can deploy E2B within their own infrastructure or utilize the provided cloud service. The platform is designed to be LLM-agnostic, allowing compatibility with various large language models such as OpenAI, Llama, Anthropic, and Mistral. E2B's features include rapid sandbox initialization, customizable execution environments, and support for long-running sessions up to 24 hours.
    Starting Price: Free
  • 4
    Pruna AI

    Pruna AI

    Pruna AI

    Pruna uses generative AI to enable companies to produce professional-grade visual content quickly and affordably. By eliminating the traditional need for studios and manual editing, it empowers brands to create consistent, customized images for advertising, product displays, and digital campaigns with minimal effort.
    Starting Price: $0.40 per runtime hour
  • 5
    LangDB

    LangDB

    LangDB

    LangDB offers a community-driven, open-access repository focused on natural language processing tasks and datasets for multiple languages. It serves as a central resource for tracking benchmarks, sharing tools, and supporting the development of multilingual AI models with an emphasis on openness and cross-linguistic representation.
    Starting Price: $49 per month
  • 6
    FriendliAI

    FriendliAI

    FriendliAI

    FriendliAI is a generative AI infrastructure platform that offers fast, efficient, and reliable inference solutions for production environments. It provides a suite of tools and services designed to optimize the deployment and serving of large language models (LLMs) and other generative AI workloads at scale. Key offerings include Friendli Endpoints, which allow users to build and serve custom generative AI models, saving GPU costs and accelerating AI inference. It supports seamless integration with popular open source models from the Hugging Face Hub, enabling lightning-fast, high-performance inference. FriendliAI's cutting-edge technologies, such as Iteration Batching, Friendli DNN Library, Friendli TCache, and Native Quantization, contribute to significant cost savings (50–90%), reduced GPU requirements (6× fewer GPUs), higher throughput (10.7×), and lower latency (6.2×).
    Starting Price: $5.9 per hour
  • 7
    kluster.ai

    kluster.ai

    kluster.ai

    Kluster.ai is a developer-centric AI cloud platform designed to deploy, scale, and fine-tune large language models (LLMs) with speed and efficiency. Built for developers by developers, it offers Adaptive Inference, a flexible and scalable service that adjusts seamlessly to workload demands, ensuring high-performance processing and consistent turnaround times. Adaptive Inference provides three distinct processing options: real-time inference for ultra-low latency needs, asynchronous inference for cost-effective handling of flexible timing tasks, and batch inference for efficient processing of high-volume, bulk tasks. It supports a range of open-weight, cutting-edge multimodal models for chat, vision, code, and more, including Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3 . Kluster.ai's OpenAI-compatible API allows developers to integrate these models into their applications seamlessly.
    Starting Price: $0.15per input
  • 8
    DeepCube

    DeepCube

    DeepCube

    DeepCube focuses on the research and development of deep learning technologies that result in improved real-world deployment of AI systems. The company’s numerous patented innovations include methods for faster and more accurate training of deep learning models and drastically improved inference performance. DeepCube’s proprietary framework can be deployed on top of any existing hardware in both datacenters and edge devices, resulting in over 10x speed improvement and memory reduction. DeepCube provides the only technology that allows efficient deployment of deep learning models on intelligent edge devices. After the deep learning training phase, the resulting model typically requires huge amounts of processing and consumes lots of memory. Due to the significant amount of memory and processing requirements, today’s deep learning deployments are limited mostly to the cloud.
  • 9
    NetApp AIPod
    NetApp AIPod is a comprehensive AI infrastructure solution designed to streamline the deployment and management of artificial intelligence workloads. By integrating NVIDIA-validated turnkey solutions, such as NVIDIA DGX BasePOD™ and NetApp's cloud-connected all-flash storage, AIPod consolidates analytics, training, and inference capabilities into a single, scalable system. This convergence enables organizations to rapidly implement AI workflows, from model training to fine-tuning and inference, while ensuring robust data management and security. With preconfigured infrastructure optimized for AI tasks, NetApp AIPod reduces complexity, accelerates time to insights, and supports seamless integration into hybrid cloud environments.
  • 10
    DeePhi Quantization Tool

    DeePhi Quantization Tool

    DeePhi Quantization Tool

    This is a model quantization tool for convolution neural networks(CNN). This tool could quantize both weights/biases and activations from 32-bit floating-point (FP32) format to 8-bit integer(INT8) format or any other bit depths. With this tool, you can boost the inference performance and efficiency significantly, while maintaining the accuracy. This tool supports common layer types in neural networks, including convolution, pooling, fully-connected, batch normalization and so on. The quantization tool does not need the retraining of the network or labeled datasets, only one batch of pictures are needed. The process time ranges from a few seconds to several minutes depending on the size of neural network, which makes rapid model update possible. This tool is collaborative optimized for DeePhi DPU and could generate INT8 format model files required by DNNC.
    Starting Price: $0.90 per hour
  • 11
    Seldon

    Seldon

    Seldon Technologies

    Deploy machine learning models at scale with more accuracy. Turn R&D into ROI with more models into production at scale, faster, with increased accuracy. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Deploy reduces the time to production by providing production grade inference servers optimized for popular ML framework or custom language wrappers to fit your use cases. Seldon Core Enterprise provides access to cutting-edge, globally tested and trusted open source MLOps software with the reassurance of enterprise-level support. Seldon Core Enterprise is for organizations requiring: - Coverage across any number of ML models deployed plus unlimited users - Additional assurances for models in staging and production - Confidence that their ML model deployments are supported and protected.
  • 12
    Google Cloud Inference API
    Time-series analysis is essential for the day-to-day operation of many companies. Most popular use cases include analyzing foot traffic and conversion for retailers, detecting data anomalies, identifying correlations in real-time over sensor data, or generating high-quality recommendations. With Cloud Inference API Alpha, you can gather insights in real-time from your typed time-series datasets. Get everything you need to understand your API queries results, such as groups of events that were examined, the number of groups of events, and the background probability of each returned event. Stream data in real-time, making it possible to compute correlations for real-time events. Rely on Google Cloud’s end-to-end infrastructure and defense-in-depth approach to security that’s been innovated on for over 15 years through consumer apps. At its core, Cloud Inference API is fully integrated with other Google Cloud Storage services.
  • 13
    Google Cloud AI Infrastructure
    Options for every business to train deep learning and machine learning models cost-effectively. AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. Access CPU platforms when you start a VM instance on Compute Engine. Compute Engine offers a range of both Intel and AMD processors for your VMs.
  • 14
    Tecton

    Tecton

    Tecton

    Deploy machine learning applications to production in minutes, rather than months. Automate the transformation of raw data, generate training data sets, and serve features for online inference at scale. Save months of work by replacing bespoke data pipelines with robust pipelines that are created, orchestrated and maintained automatically. Increase your team’s efficiency by sharing features across the organization and standardize all of your machine learning data workflows in one platform. Serve features in production at extreme scale with the confidence that systems will always be up and running. Tecton meets strict security and compliance standards. Tecton is not a database or a processing engine. It plugs into and orchestrates on top of your existing storage and processing infrastructure.
  • 15
    Pinecone

    Pinecone

    Pinecone

    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles. Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval. Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results. Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
  • 16
    ModelScope

    ModelScope

    Alibaba Cloud

    This model is based on a multi-stage text-to-video generation diffusion model, which inputs a description text and returns a video that matches the text description. Only English input is supported. This model is based on a multi-stage text-to-video generation diffusion model, which inputs a description text and returns a video that matches the text description. Only English input is supported. The text-to-video generation diffusion model consists of three sub-networks: text feature extraction, text feature-to-video latent space diffusion model, and video latent space to video visual space. The overall model parameters are about 1.7 billion. Support English input. The diffusion model adopts the Unet3D structure, and realizes the function of video generation through the iterative denoising process from the pure Gaussian noise video.
    Starting Price: Free
  • 17
    fal

    fal

    fal.ai

    fal is a serverless Python runtime that lets you scale your code in the cloud with no infra management. Build real-time AI applications with lightning-fast inference (under ~120ms). Check out some of the ready-to-use models, they have simple API endpoints ready for you to start your own AI-powered applications. Ship custom model endpoints with fine-grained control over idle timeout, max concurrency, and autoscaling. Use common models such as Stable Diffusion, Background Removal, ControlNet, and more as APIs. These models are kept warm for free. (Don't pay for cold starts) Join the discussion around our product and help shape the future of AI. Automatically scale up to hundreds of GPUs and scale down back to 0 GPUs when idle. Pay by the second only when your code is running. You can start using fal on any Python project by just importing fal and wrapping existing functions with the decorator.
    Starting Price: $0.00111 per second
  • 18
    Nebius

    Nebius

    Nebius

    Training-ready platform with NVIDIA® H100 Tensor Core GPUs. Competitive pricing. Dedicated support. Built for large-scale ML workloads: Get the most out of multihost training on thousands of H100 GPUs of full mesh connection with latest InfiniBand network up to 3.2Tb/s per host. Best value for money: Save at least 50% on your GPU compute compared to major public cloud providers*. Save even more with reserves and volumes of GPUs. Onboarding assistance: We guarantee a dedicated engineer support to ensure seamless platform adoption. Get your infrastructure optimized and k8s deployed. Fully managed Kubernetes: Simplify the deployment, scaling and management of ML frameworks on Kubernetes and use Managed Kubernetes for multi-node GPU training. Marketplace with ML frameworks: Explore our Marketplace with its ML-focused libraries, applications, frameworks and tools to streamline your model training. Easy to use. We provide all our new users with a 1-month trial period.
    Starting Price: $2.66/hour
  • 19
    Ori GPU Cloud
    Launch GPU-accelerated instances highly configurable to your AI workload & budget. Reserve thousands of GPUs in a next-gen AI data center for training and inference at scale. The AI world is shifting to GPU clouds for building and launching groundbreaking models without the pain of managing infrastructure and scarcity of resources. AI-centric cloud providers outpace traditional hyperscalers on availability, compute costs and scaling GPU utilization to fit complex AI workloads. Ori houses a large pool of various GPU types tailored for different processing needs. This ensures a higher concentration of more powerful GPUs readily available for allocation compared to general-purpose clouds. Ori is able to offer more competitive pricing year-on-year, across on-demand instances or dedicated servers. When compared to per-hour or per-usage pricing of legacy clouds, our GPU compute costs are unequivocally cheaper to run large-scale AI workloads.
    Starting Price: $3.24 per month
  • 20
    Qubrid AI

    Qubrid AI

    Qubrid AI

    Qubrid AI is an advanced Artificial Intelligence (AI) company with a mission to solve real world complex problems in multiple industries. Qubrid AI’s software suite comprises of AI Hub, a one-stop shop for everything AI models, AI Compute GPU Cloud and On-Prem Appliances and AI Data Connector! Train our inference industry-leading models or your own custom creations, all within a streamlined, user-friendly interface. Test and refine your models with ease, then seamlessly deploy them to unlock the power of AI in your projects. AI Hub empowers you to embark on your AI Journey, from concept to implementation, all in a single, powerful platform. Our leading cutting-edge AI Compute platform harnesses the power of GPU Cloud and On-Prem Server Appliances to efficiently develop and run next generation AI applications. Qubrid team is comprised of AI developers, researchers and partner teams all focused on enhancing this unique platform for the advancement of scientific applications.
    Starting Price: $0.68/hour/GPU
  • 21
    Substrate

    Substrate

    Substrate

    Substrate is the platform for agentic AI. Elegant abstractions and high-performance components, optimized models, vector database, code interpreter, and model router. Substrate is the only compute engine designed to run multi-step AI workloads. Describe your task by connecting components and let Substrate run it as fast as possible. We analyze your workload as a directed acyclic graph and optimize the graph, for example, merging nodes that can be run in a batch. The Substrate inference engine automatically schedules your workflow graph with optimized parallelism, reducing the complexity of chaining multiple inference APIs. No more async programming, just connect nodes and let Substrate parallelize your workload. Our infrastructure guarantees your entire workload runs in the same cluster, often on the same machine. You won’t spend fractions of a second per task on unnecessary data roundtrips and cross-region HTTP transport.
    Starting Price: $30 per month
  • 22
    NetMind AI

    NetMind AI

    NetMind AI

    NetMind.AI is a decentralized computing platform and AI ecosystem designed to accelerate global AI innovation. By leveraging idle GPU resources worldwide, it offers accessible and affordable AI computing power to individuals, businesses, and organizations of all sizes. The platform provides a range of services, including GPU rental, serverless inference, and an AI ecosystem that encompasses data processing, model training, inference, and agent development. Users can rent GPUs at competitive prices, deploy models effortlessly with on-demand serverless inference, and access a wide array of open-source AI model APIs with high-throughput, low-latency performance. NetMind.AI also enables contributors to add their idle GPUs to the network, earning NetMind Tokens (NMT) as rewards. These tokens facilitate transactions on the platform, allowing users to pay for services such as training, fine-tuning, inference, and GPU rentals.
  • 23
    Amazon EC2 Inf1 Instances
    Amazon EC2 Inf1 instances are purpose-built to deliver high-performance and cost-effective machine learning inference. They provide up to 2.3 times higher throughput and up to 70% lower cost per inference compared to other Amazon EC2 instances. Powered by up to 16 AWS Inferentia chips, ML inference accelerators designed by AWS, Inf1 instances also feature 2nd generation Intel Xeon Scalable processors and offer up to 100 Gbps networking bandwidth to support large-scale ML applications. These instances are ideal for deploying applications such as search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers can deploy their ML models on Inf1 instances using the AWS Neuron SDK, which integrates with popular ML frameworks like TensorFlow, PyTorch, and Apache MXNet, allowing for seamless migration with minimal code changes.
    Starting Price: $0.228 per hour
  • 24
    Amazon EC2 G5 Instances
    Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.
    Starting Price: $1.006 per hour
  • 25
    Nscale

    Nscale

    Nscale

    Nscale is the Hyperscaler engineered for AI, offering high-performance computing optimized for training, fine-tuning, and intensive workloads. From our data centers to our software stack, we are vertically integrated in Europe to provide unparalleled performance, efficiency, and sustainability. Access thousands of GPUs tailored to your requirements using our AI cloud platform. Reduce costs, grow revenue, and run your AI workloads more efficiently on a fully integrated platform. Whether you're using Nscale's built-in AI/ML tools or your own, our platform is designed to simplify the journey from development to production. The Nscale Marketplace offers users access to various AI/ML tools and resources, enabling efficient and scalable model development and deployment. Serverless allows seamless, scalable AI inference without the need to manage infrastructure. It automatically scales to meet demand, ensuring low latency and cost-effective inference for popular generative AI models.
  • 26
    NVIDIA NIM
    Explore the latest optimized AI models, connect AI agents to data with NVIDIA NeMo, and deploy anywhere with NVIDIA NIM microservices. NVIDIA NIM is a set of easy-to-use inference microservices that facilitate the deployment of foundation models across any cloud or data center, ensuring data security and streamlined AI integration. Additionally, NVIDIA AI provides access to the Deep Learning Institute (DLI), offering technical training to gain in-demand skills, hands-on experience, and expert knowledge in AI, data science, and accelerated computing. AI models generate responses and outputs based on complex algorithms and machine learning techniques, and those responses or outputs may be inaccurate, harmful, biased, or indecent. By testing this model, you assume the risk of any harm caused by any response or output of the model. Please do not upload any confidential information or personal data unless expressly permitted. Your use is logged for security purposes.
  • 27
    Aligned

    Aligned

    Aligned

    Aligned is a customer-facing collaboration platform that serves as both a digital sales room and a client portal, designed to enhance sales and customer success processes. It enables go-to-market teams to orchestrate complex deals, boost buyer engagement, and expedite client onboarding. It consolidates all decision-support materials into a single collaborative workspace, allowing account executives to better equip champions for internal advocacy, access more stakeholders, and maintain control through mutual action plans. Customer success managers can utilize Aligned to create personalized onboarding experiences, ensuring a smooth and efficient customer journey. Aligned offers features such as content sharing, chat, e-signature, and CRM integration, all within an intuitive interface that requires no login for clients. It is free to try, with no credit card required, and provides flexible pricing plans to accommodate different business needs.
  • 28
    Synexa

    Synexa

    Synexa

    ​Synexa AI enables users to deploy AI models with a single line of code, offering a simple, fast, and stable solution. It supports various functionalities, including image and video generation, image restoration, image captioning, model fine-tuning, and speech generation. Synexa provides access to over 100 production-ready AI models, such as FLUX Pro, Ideogram v2, and Hunyuan Video, with new models added weekly and zero setup required. Synexa's optimized inference engine delivers up to 4x faster performance on diffusion models, achieving sub-second generation times with FLUX and other popular models. Developers can integrate AI capabilities in minutes using intuitive SDKs and comprehensive API documentation, with support for Python, JavaScript, and REST API. Synexa offers enterprise-grade GPU infrastructure with A100s and H100s across three continents, ensuring sub-100ms latency with smart routing and a 99.9% uptime guarantee.
    Starting Price: $0.0125 per image
  • 29
    IBM Watson Machine Learning Accelerator
    Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
  • 30
    NVIDIA Run:ai
    NVIDIA Run:ai is an enterprise platform designed to optimize AI workloads and orchestrate GPU resources efficiently. It dynamically allocates and manages GPU compute across hybrid, multi-cloud, and on-premises environments, maximizing utilization and scaling AI training and inference. The platform offers centralized AI infrastructure management, enabling seamless resource pooling and workload distribution. Built with an API-first approach, Run:ai integrates with major AI frameworks and machine learning tools to support flexible deployment anywhere. It also features a powerful policy engine for strategic resource governance, reducing manual intervention. With proven results like 10x GPU availability and 5x utilization, NVIDIA Run:ai accelerates AI development cycles and boosts ROI.