Compare the Top AI Fine-Tuning Platforms that integrate with PostgreSQL as of June 2025

This a list of AI Fine-Tuning platforms that integrate with PostgreSQL. Use the filters on the left to add additional filters for products that have integrations with PostgreSQL. View the products that work with PostgreSQL in the table below.

What are AI Fine-Tuning Platforms for PostgreSQL?

AI fine-tuning platforms are tools used to improve the performance of artificial intelligence models. These platforms provide a framework for training and optimizing AI algorithms, allowing them to better understand and respond to data. They offer a variety of features such as automated hyperparameter tuning and data augmentation techniques. Users can also visualize the training process and monitor the model's accuracy over time. Overall, these platforms aim to streamline the process of fine-tuning AI models for various applications and industries. Compare and read user reviews of the best AI Fine-Tuning platforms for PostgreSQL currently available using the table below. This list is updated regularly.

  • 1
    Stack AI

    Stack AI

    Stack AI

    AI agents that interact with users, answer questions, and complete tasks, using your internal data and APIs. AI that answers questions, summarize, and extract insights from any document, no matter how long. Generate tags, summaries, and transfer styles or formats between documents and data sources. Developer teams use Stack AI to automate customer support, process documents, qualify sales leads, and search through libraries of data. Try multiple prompts and LLM architectures with the ease of a button. Collect data and run fine-tuning jobs to build the optimal LLM for your product. We host all your workflows as APIs so that your users can access AI instantly. Select from the different LLM providers to compare fine-tuning jobs that satisfy your accuracy, price, and latency needs.
    Starting Price: $199/month
    View Platform
    Visit Website
  • 2
    Predibase

    Predibase

    Predibase

    Declarative machine learning systems provide the best of flexibility and simplicity to enable the fastest-way to operationalize state-of-the-art models. Users focus on specifying the “what”, and the system figures out the “how”. Start with smart defaults, but iterate on parameters as much as you’d like down to the level of code. Our team pioneered declarative machine learning systems in industry, with Ludwig at Uber and Overton at Apple. Choose from our menu of prebuilt data connectors that support your databases, data warehouses, lakehouses, and object storage. Train state-of-the-art deep learning models without the pain of managing infrastructure. Automated Machine Learning that strikes the balance of flexibility and control, all in a declarative fashion. With a declarative approach, finally train and deploy models as quickly as you want.
  • 3
    OpenPipe

    OpenPipe

    OpenPipe

    OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.
    Starting Price: $1.20 per 1M tokens
  • 4
    LLMWare.ai

    LLMWare.ai

    LLMWare.ai

    Our open source research efforts are focused both on the new "ware" ("middleware" and "software" that will wrap and integrate LLMs), as well as building high-quality, automation-focused enterprise models available in Hugging Face. LLMWare also provides a coherent, high-quality, integrated, and organized framework for development in an open system that provides the foundation for building LLM-applications for AI Agent workflows, Retrieval Augmented Generation (RAG), and other use cases, which include many of the core objects for developers to get started instantly. Our LLM framework is built from the ground up to handle the complex needs of data-sensitive enterprise use cases. Use our pre-built specialized LLMs for your industry or we can customize and fine-tune an LLM for specific use cases and domains. From a robust, integrated AI framework to specialized models and implementation, we provide an end-to-end solution.
    Starting Price: Free
  • 5
    Label Studio

    Label Studio

    Label Studio

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input.
  • Previous
  • You're on page 1
  • Next