Compare the Top AI Fine-Tuning Platforms that integrate with Docker as of July 2025

This a list of AI Fine-Tuning platforms that integrate with Docker. Use the filters on the left to add additional filters for products that have integrations with Docker. View the products that work with Docker in the table below.

What are AI Fine-Tuning Platforms for Docker?

AI fine-tuning platforms are tools used to improve the performance of artificial intelligence models. These platforms provide a framework for training and optimizing AI algorithms, allowing them to better understand and respond to data. They offer a variety of features such as automated hyperparameter tuning and data augmentation techniques. Users can also visualize the training process and monitor the model's accuracy over time. Overall, these platforms aim to streamline the process of fine-tuning AI models for various applications and industries. Compare and read user reviews of the best AI Fine-Tuning platforms for Docker currently available using the table below. This list is updated regularly.

  • 1
    Google AI Studio
    Google AI Studio offers robust fine-tuning capabilities, allowing users to tailor pre-trained models to meet their specific needs. Fine-tuning involves adjusting the weights and parameters of an existing AI model based on domain-specific data, resulting in improved accuracy and performance. This is particularly useful for businesses that require customized AI solutions to address unique challenges, such as specialized language processing or industry-specific insights. The platform provides an easy-to-use interface for fine-tuning, enabling users to quickly adapt models to new data and refine their AI systems to better align with their objectives.
    Starting Price: Free
    View Platform
    Visit Website
  • 2
    RunPod

    RunPod

    RunPod

    RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure.
    Starting Price: $0.40 per hour
    View Platform
    Visit Website
  • 3
    Lamini

    Lamini

    Lamini

    Lamini makes it possible for enterprises to turn proprietary data into the next generation of LLM capabilities, by offering a platform for in-house software teams to uplevel to OpenAI-level AI teams and to build within the security of their existing infrastructure. Guaranteed structured output with optimized JSON decoding. Photographic memory through retrieval-augmented fine-tuning. Improve accuracy, and dramatically reduce hallucinations. Highly parallelized inference for large batch inference. Parameter-efficient finetuning that scales to millions of production adapters. Lamini is the only company that enables enterprise companies to safely and quickly develop and control their own LLMs anywhere. It brings several of the latest technologies and research to bear that was able to make ChatGPT from GPT-3, as well as Github Copilot from Codex. These include, among others, fine-tuning, RLHF, retrieval-augmented training, data augmentation, and GPU optimization.
    Starting Price: $99 per month
  • 4
    Axolotl

    Axolotl

    Axolotl

    ​Axolotl is an open source tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. It enables users to train models, supporting methods like full fine-tuning, LoRA, QLoRA, ReLoRA, and GPTQ. Users can customize configurations using simple YAML files or command-line interface overrides, and load different dataset formats, including custom or pre-tokenized datasets. Axolotl integrates with technologies like xFormers, Flash Attention, Liger kernel, RoPE scaling, and multipacking, and works with single or multiple GPUs via Fully Sharded Data Parallel (FSDP) or DeepSpeed. It can be run locally or on the cloud using Docker and supports logging results and checkpoints to several platforms. It is designed to make fine-tuning AI models friendly, fast, and fun, without sacrificing functionality or scale.
    Starting Price: Free
  • 5
    Label Studio

    Label Studio

    Label Studio

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input.
  • 6
    Cargoship

    Cargoship

    Cargoship

    Select a model from our open source collection, run the container and access the model API in your product. No matter if Image Recognition or Language Processing - all models are pre-trained and packaged in an easy-to-use API. Choose from a large selection of models that is always growing. We curate and fine-tune the best models from HuggingFace and Github. You can either host the model yourself very easily or get your personal endpoint and API-Key with one click. Cargoship is keeping up with the development of the AI space so you don’t have to. With the Cargoship Model Store you get a collection for every ML use case. On the website you can try them out in demos and get detailed guidance from what the model does to how to implement it. Whatever your level of expertise, we will pick you up and give you detailed instructions.
  • Previous
  • You're on page 1
  • Next