Compare the Top AI Development Platforms that integrate with Jenkins as of October 2025

This a list of AI Development platforms that integrate with Jenkins. Use the filters on the left to add additional filters for products that have integrations with Jenkins. View the products that work with Jenkins in the table below.

What are AI Development Platforms for Jenkins?

AI development platforms are tools that enable developers to build, manage, and deploy AI applications. These platforms provide the necessary infrastructure for the development of AI models, such as access to data sets and computing resources. They can also help facilitate the integration of data sources or be used to create workflows for managing machine learning algorithms. Finally, these platforms provide an environment for deploying models into production systems so they can be used by end users. Compare and read user reviews of the best AI Development platforms for Jenkins currently available using the table below. This list is updated regularly.

  • 1
    SuperAGI SuperCoder
    SuperAGI SuperCoder is an open-source autonomous system that combines AI-native dev platform & AI agents to enable fully autonomous software development starting with python language & frameworks SuperCoder 2.0 leverages LLMs & Large Action Model (LAM) fine-tuned for python code generation leading to one shot or few shot python functional coding with significantly higher accuracy across SWE-bench & Codebench As an autonomous system, SuperCoder 2.0 combines software guardrails specific to development framework starting with Flask & Django with SuperAGI’s Generally Intelligent Developer Agents to deliver complex real world software systems SuperCoder 2.0 deeply integrates with existing developer stack such as Jira, Github or Gitlab, Jenkins, CSPs and QA solutions such as BrowserStack /Selenium Clouds to ensure a seamless software development experience
    Starting Price: Free
  • 2
    Faros AI

    Faros AI

    Faros AI

    Faros AI connects the dots between your engineering data sources – ticketing, source control, CI/CD, and more – giving unprecedented visibility and insight into your engineering processes. Be amazed at what you can achieve with Faros AI. With Faros AI, engineering leaders can scale their operations in a more data-informed way — using data to identify bottlenecks, measure progress towards organizational goals, better support teams with the right resources, and accurately assess the impact of interventions over time. DORA Metrics come standard in Faros AI, and the platform is extensible to allow organizations to build their own custom dashboards and metrics so they can get deep insights into their engineering operations and take intelligent action in a data-driven manner. Leading organizations including Box, Coursera, GoFundMe, Astronomer, Salesforce, etc. trust Faros AI as their engops platform of choice.
  • 3
    Maxim

    Maxim

    Maxim

    Maxim is an agent simulation, evaluation, and observability platform that empowers modern AI teams to deploy agents with quality, reliability, and speed. Maxim's end-to-end evaluation and data management stack covers every stage of the AI lifecycle, from prompt engineering to pre & post release testing and observability, data-set creation & management, and fine-tuning. Use Maxim to simulate and test your multi-turn workflows on a wide variety of scenarios and across different user personas before taking your application to production. Features: Agent Simulation Agent Evaluation Prompt Playground Logging/Tracing Workflows Custom Evaluators- AI, Programmatic and Statistical Dataset Curation Human-in-the-loop Use Case: Simulate and test AI agents Evals for agentic workflows: pre and post-release Tracing and debugging multi-agent workflows Real-time alerts on performance and quality Creating robust datasets for evals and fine-tuning Human-in-the-loop workflows
    Starting Price: $29/seat/month
  • 4
    CognitiveScale Cortex AI
    Developing AI solutions requires an engineering approach that is resilient, open and repeatable to ensure necessary quality and agility is achieved. Until today these efforts are missing the foundation to address these challenges amid a sea of point tools and fast changing models and data. Collaborative developer platform for automating development and control of AI applications across multiple personas. Derive hyper-detailed customer profiles from enterprise data to predict behaviors in real-time and at scale. Generate AI-powered models designed to continuously learn and achieve clearly defined business outcomes. Enables organizations to explain and prove compliance with applicable rules and regulations. CognitiveScale's Cortex AI Platform addresses enterprise AI use cases through modular platform offerings. Our customers consume and leverage its capabilities as microservices within their enterprise AI initiatives.
  • Previous
  • You're on page 1
  • Next