Compare the Top AI Development Platforms that integrate with AWS Lambda as of October 2025

This a list of AI Development platforms that integrate with AWS Lambda. Use the filters on the left to add additional filters for products that have integrations with AWS Lambda. View the products that work with AWS Lambda in the table below.

What are AI Development Platforms for AWS Lambda?

AI development platforms are tools that enable developers to build, manage, and deploy AI applications. These platforms provide the necessary infrastructure for the development of AI models, such as access to data sets and computing resources. They can also help facilitate the integration of data sources or be used to create workflows for managing machine learning algorithms. Finally, these platforms provide an environment for deploying models into production systems so they can be used by end users. Compare and read user reviews of the best AI Development platforms for AWS Lambda currently available using the table below. This list is updated regularly.

  • 1
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
    Starting Price: Free
  • 2
    Oumi

    Oumi

    Oumi

    Oumi is a fully open source platform that streamlines the entire lifecycle of foundation models, from data preparation and training to evaluation and deployment. It supports training and fine-tuning models ranging from 10 million to 405 billion parameters using state-of-the-art techniques such as SFT, LoRA, QLoRA, and DPO. The platform accommodates both text and multimodal models, including architectures like Llama, DeepSeek, Qwen, and Phi. Oumi offers tools for data synthesis and curation, enabling users to generate and manage training datasets effectively. For deployment, it integrates with popular inference engines like vLLM and SGLang, ensuring efficient model serving. The platform also provides comprehensive evaluation capabilities across standard benchmarks to assess model performance. Designed for flexibility, Oumi can run on various environments, from local laptops to cloud infrastructures such as AWS, Azure, GCP, and Lambda.
    Starting Price: Free
  • 3
    Saagie

    Saagie

    Saagie

    The Saagie cloud data factory is a turnkey platform that lets you create and manage all your data & AI projects in a single interface, deployable in just a few clicks. Develop your use cases and test your AI models in a secure way with the Saagie data factory. Get your data and AI projects off the ground with a single interface and centralize your teams to make rapid progress. Whatever your maturity level, from your first data project to a data & AI-driven strategy, the Saagie platform is there for you. Simplify your workflows, boost your productivity, and make more informed decisions by unifying your work on a single platform. Transform your raw data into powerful insights by orchestrating your data pipelines. Get quick access to the information you need to make more informed decisions. Simplify the management and scalability of your data and AI infrastructure. Accelerate the time-to-production of your AI, machine learning, and deep learning models.
  • 4
    Neum AI

    Neum AI

    Neum AI

    No one wants their AI to respond with out-of-date information to a customer. ‍Neum AI helps companies have accurate and up-to-date context in their AI applications. Use built-in connectors for data sources like Amazon S3 and Azure Blob Storage, vector stores like Pinecone and Weaviate to set up your data pipelines in minutes. Supercharge your data pipeline by transforming and embedding your data with built-in connectors for embedding models like OpenAI and Replicate, and serverless functions like Azure Functions and AWS Lambda. Leverage role-based access controls to make sure only the right people can access specific vectors. Bring your own embedding models, vector stores and sources. Ask us about how you can even run Neum AI in your own cloud.
  • 5
    Ikigai

    Ikigai

    Ikigai

    Model improvement and incremental model updates scenario analysis through simulations using historical data. Collaborate easily with data governance, access management, and version control. Ikigai’s out-of-the-box integrations make it easy to work with all kinds of tools that are already part of your workflows. Plug into almost any data source you can think of with Ikigai’s 200+ connectors. Want to push your ML pipeline to a website or dashboard? Just integrate directly using Ikigai’s web integrations. Use triggers to run data synchronizations and retrieve updates each time you run a data automation flow. Hook into your own APIs, or create APIs for your own data stack to integrate seamlessly with Ikigai.
  • Previous
  • You're on page 1
  • Next