Compare the Top AI Development Platforms that integrate with Apify as of December 2025

This a list of AI Development platforms that integrate with Apify. Use the filters on the left to add additional filters for products that have integrations with Apify. View the products that work with Apify in the table below.

What are AI Development Platforms for Apify?

AI development platforms are tools that enable developers to build, manage, and deploy AI applications. These platforms provide the necessary infrastructure for the development of AI models, such as access to data sets and computing resources. They can also help facilitate the integration of data sources or be used to create workflows for managing machine learning algorithms. Finally, these platforms provide an environment for deploying models into production systems so they can be used by end users. Compare and read user reviews of the best AI Development platforms for Apify currently available using the table below. This list is updated regularly.

  • 1
    LangChain

    LangChain

    LangChain

    LangChain is a powerful, composable framework designed for building, running, and managing applications powered by large language models (LLMs). It offers an array of tools for creating context-aware, reasoning applications, allowing businesses to leverage their own data and APIs to enhance functionality. LangChain’s suite includes LangGraph for orchestrating agent-driven workflows, and LangSmith for agent observability and performance management. Whether you're building prototypes or scaling full applications, LangChain offers the flexibility and tools needed to optimize the LLM lifecycle, with seamless integrations and fault-tolerant scalability.
  • 2
    Flowise

    Flowise

    Flowise AI

    Flowise is an open-source, low-code platform that enables developers to create customized Large Language Model (LLM) applications through a user-friendly drag-and-drop interface. It supports integration with various LLMs, including LangChain and LlamaIndex, and offers over 100 integrations to facilitate the development of AI agents and orchestration flows. Flowise provides APIs, SDKs, and embedded widgets for seamless incorporation into existing systems, and is platform-agnostic, allowing deployment in air-gapped environments with local LLMs and vector databases.
    Starting Price: Free
  • 3
    Langtail

    Langtail

    Langtail

    Langtail is a cloud-based application development tool designed to help companies debug, test, deploy, and monitor LLM-powered apps with ease. The platform offers a no-code playground for debugging prompts, fine-tuning model parameters, and running LLM tests to prevent issues when models or prompts change. Langtail specializes in LLM testing, including chatbot testing and ensuring robust AI LLM test prompts. With its comprehensive features, Langtail enables teams to: • Test LLM models thoroughly to catch potential issues before they affect production environments. • Deploy prompts as API endpoints for seamless integration. • Monitor model performance in production to ensure consistent outcomes. • Use advanced AI firewall capabilities to safeguard and control AI interactions. Langtail is the ideal solution for teams looking to ensure the quality, stability, and security of their LLM and AI-powered applications.
    Starting Price: $99/month/unlimited users
  • 4
    Model Context Protocol (MCP)
    Model Context Protocol (MCP) is an open protocol designed to standardize how applications provide context to large language models (LLMs). It acts as a universal connector, similar to a USB-C port, allowing LLMs to seamlessly integrate with various data sources and tools. MCP supports a client-server architecture, enabling programs (clients) to interact with lightweight servers that expose specific capabilities. With growing pre-built integrations and flexibility to switch between LLM vendors, MCP helps users build complex workflows and AI agents while ensuring secure data management within their infrastructure.
    Starting Price: Free
  • 5
    Pinecone

    Pinecone

    Pinecone

    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles. Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval. Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results. Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
  • 6
    Amazon Bedrock
    Amazon Bedrock is a fully managed service that simplifies building and scaling generative AI applications by providing access to a variety of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon itself. Through a single API, developers can experiment with these models, customize them using techniques like fine-tuning and Retrieval Augmented Generation (RAG), and create agents that interact with enterprise systems and data sources. As a serverless platform, Amazon Bedrock eliminates the need for infrastructure management, allowing seamless integration of generative AI capabilities into applications with a focus on security, privacy, and responsible AI practices.
  • 7
    LlamaIndex

    LlamaIndex

    LlamaIndex

    LlamaIndex is a “data framework” to help you build LLM apps. Connect semi-structured data from API's like Slack, Salesforce, Notion, etc. LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. LlamaIndex provides the key tools to augment your LLM applications with data. Connect your existing data sources and data formats (API's, PDF's, documents, SQL, etc.) to use with a large language model application. Store and index your data for different use cases. Integrate with downstream vector store and database providers. LlamaIndex provides a query interface that accepts any input prompt over your data and returns a knowledge-augmented response. Connect unstructured sources such as documents, raw text files, PDF's, videos, images, etc. Easily integrate structured data sources from Excel, SQL, etc. Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • Previous
  • You're on page 1
  • Next