Accessing and Modifying the YPOPs Code Base

This guide will walk you through the steps you need to take to access the code, as well as the steps you need to perform to modify the code. If you have any questions or problems, feel free to ask on our Developer forum (yahoopops.sourceforge.net). Everything you need is free (or at least has free options).

Note that some of these steps won't apply to everyone (for instance, you might already have an unzipper on your machine). You can skip those sections which don't apply to you. But please make sure to read all the sections until you are positive any particular section doesn't apply. Especially make sure to read the final section on the procedure used to commit code, it applies to everyone and is very important!

There are a lot of steps here. But don't panic, most of this stuff needs to be done only once. Once you are set up, the only things you need to do on a regular basis are starting up Pageant, Updating, coding, and Committing.

The compiler – You need a C++ compiler, which is what you will use to write and compile code. On Windows, you need MSVC++ 6.0. On Unix/Linux, you need GCC, which you can find at http://gcc.gnu.org. Use the instructions on the web page to get the package set up. You need to set up GCC to compile C++ code.

YPOPs is designed to run on a Win32 platform (Win9x, WinXP, and so on) and Unix/Linux. The rest of these instructions are for Win32 platform.

An Unzipper – Some of the downloads you will be making require they be uncompressed (or unzipped). To do this, you will need an unzipper. Most people will probably already have one. If you don't (or are unsure), you can download a free one called 7-zip at (http://sourceforge.net/project/showfiles.php?group_id=14481). The package you want is at the top, called 7z313.exe. Download this and run it, as per the instructions found here (http://sourceforge.net/docman/display_doc.php?docid=766&group_id=1#sevenzip). You will have to restart your computer.

SourceForge – Now you need to set up your SourceForge account. Don't worry, it's totally free. SF is where YPOPs resides, and you'll need to have an account to access the code non-anonymously (which is the only way to get write access to the code base). Head on over to SourceForge (http://sourceforge.net). On the upper left, you will see the "New User via SSL" link. Hit that, and proceed to fill out the requested information. After a running through a few hoops, you will now have an account.

Now is a good time to contact the project admins. They will need to set you up as a developer on the yahoopops project in order for you to get write access permission. Just give them your SF account name and one of them will add you on. You can fire off an e-mail to anujseth@sourceforge.net and osdndevel@sourceforge.net. One of them should get back to you pretty quickly, but you don't need to wait for a response to continue with this document.

Python – Now you'll need Python. This is required to run macros in WinCVS (which we'll get to later). You can get Python at (www.python.org). The package you want is called Python 2.3.4.exe. Download this file and run it to install Python. Once you are finished, this may require a reboot (CAN SOMEONE CONFIRM THE REBOOT?)

Putty - The next step is to acquire and set up your SSH client. This is nothing more than a secure communication protocol between you and SourceForge. The Putty download can be found at (http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html). There are a whole mess of packages here. The one you want is called putty.zip (it's under the section called "A .ZIP file containing all the binaries (except PuTTYtel), and also the help files", and you want the one labeled "For intel x86". Download this package and unzip it (using your unzipper) into whatever directory you feel is appropriate.

Before we move on, let's start setting up Putty to access the SourceForge server. First we need to generate an SSH key. In your Putty directory, run the program called PuttyGen.exe. Under parameters, select the SSH2 DSA option, and hit the Generate button. Move the mouse around a bit (to generate random data), and two keys will be generated.

In the key comment section, you may want to append some relevant information (such as @shell.sf.net). Enter and confirm a passphrase for your private key (this is just a password you will be prompted for whenever you access your private key). Now hit the "Save Private Key" button, and save that portion of your key. I usually just put it in the same directory as Putty.

For the other half of your key, go to the upper box where the key is displayed, and highlight the ENTIRE contents of that box. Hit Control-C to copy it. Now go back to the SourceForge website. Log into your account (if you haven't already) and then hit the "My sf.net" link (it's toward the top). Then hit the "Account Options" link.

There are a number of options here, but the one we are interested in right now is the "Host Access Information" section. You should see a link that says "[Edit SSH keys for Shell/CVS]. Go there. Enter the Authorized Key box and hit Control-V to paste in your key. It should appear on a single line. Ht the update button and take note of the time. We have to wait 20 minutes for the server to synch the key. Before you leave, make sure the "Number of SSH shared keys on file" is correct (probably 1, unless you've set up more than one key). If it's not right, you added some extra line breaks. Try it again.

While we are waiting for the 20 minutes go by, let's finish configuring Putty. Close PuttyGen and run Putty.exe. The only thing we need to change here is the first screen (The Session Screen). In the Host Name box, type cvs.sourceforge.net. You can leave the port as it is. Set the protocol to SSH. In the "Close Window on Exit" section, select "Never". Now in Saved Sessions, type in SourceForge and hit the save button.

Hit the Open Button. You will be prompted to verify the web page fingerprint. You should compare the fingerprint you get to this page (http://sourceforge.net/docman/display_doc.php?docid=3088&group_id=1#fingerprintlist). Hit Yes to verify once you have done so. You will now be connected to SourceForge. Enter your username and password at the prompt. SourceForge will do some internal stuff, then log you out automatically. This is normal, there is nothing else to do from this shell.

Note that others had some trouble with this last step. It took a few tries to get SourceForge to accept the username and password. If you have trouble, give it a few attempts, the SF server is quite busy and you may have to give it a few times before it works.

There is one last program to configure for Putty. Run Pageant.exe in the Putty folder. This creates an icon in your task bar. Double click on this icon. Hit the "Add Key" button, navigate over to where you stored your private key, and select it. You will be prompted for your password (the one you entered when creating the key in PuttyGen). Hit Close. Your SSH agent is now all set up.

Now you should wait for that 20 minutes for the server to synch your key. The next step requires SF to know what your public key is. So go get a cup of coffee or something.

So 20 minutes have passed since you sent your public key to SF. Now we're going to verify that everything is working properly. Go to the Windows Start menu and hit the "Run" button. Type in CMD and hit okay. At the prompt, type in the following command:
c:\putty\plink.exe username@shell.sourceforge.net echo "SSH public key is in place."

Replace the directory with your own putty directory, and replace username with your SourceForge account name. You should get back a line saying "SSH public key is in place."

Now type in this line:
c:\putty\plink.exe username@cvs.sourceforge.net echo "SSH public key is in place."
With all the same substitutions. You will get back:
"This is a restricted Shell Account".
If you get these messages back, you have successfully set up your SSH agent. Congratulations, the worst is behind you!

WinCVS – Okay, now it is time to get our CVS client. We're going to use WinCVS. This will be the program you use to pull code off the server and commit new code back to the server. First, the download. Go to (http://www.wincvs.org/download.html). The package you need is "WinCVS 1.3.17.2". Download the Installer. Unzip it and run the setup program, following all the usual prompts.

Once you've installed WinCVS, run it. Go to the Admin->Preferences menu, which opens a dialog box (this may come up automatically the first time you run the program). On the General tab, set the following parameters:

Authentication: ssh

Path: /cvsroot/yahoopops
Host: cvs.sourceforge.net

User Name: Set this to your SourceForge Account name (should be no caps)

CVSROOT: username@cvs.sourceforge.net:/cvsroot/yahoopops
Type that last one in carefully (note the colon). Replace username with your sourceforge account name. Now hit the Settings button next to the Authentication box. Check the SSH client, and hit the browse button underneath it (to the right). Navigate to your Putty directory and select PLINK.EXE. You should have something like this in the box:
C:\Putty\PLINK.EXE

On the globals tab, make sure "Checkout Read only" is NOT selected.

On the CVS tab, set the HOME box to your Putty directory (e.g. C:\Putty)

All the other tabs should be fine as they are.

Code Checkout – Presuming you have been set up as a developer on the yahoopops project, you should now have write access to it. Lets test it by checking out the code.

Code checkout should pretty much happen only once. This creates a "sandbox" for you to work in. The only reason you would checkout code after the first time is if, for some reason, you completely erase your sandbox. If you have previously checked out a sandbox anonymously, you should completely erase it from your drive before checking out a non-anonymous version. If you don't do this, chances are you will not be able to commit new code. If you are not sure if you have or haven't checked out the code anonymously before, you likely haven't.

First, use the Windows Explorer to create a folder in which you are going to store the sandbox. Call it c:\src\sourceforge or whatever you like.

Now, make sure Pageant is still running (check the icon in the system tray), and fire up WinCVS (if it's not already). You should get a message like this:

CVSROOT: username@cvs.sourceforge.net:/cvsroot/yahoopops (ssh authentication)

Python 2.3.4 (#53, May 25 2004, 21:17:02) [MSC v.1200 32 bit (Intel)] on win32

TCL is available, shell is enabled : help (select and press enter)

Go to the "Remote" menu and hit "Checkout Module". In the dialog box that appears, type in "yahoopops" in the first box, and the directory you just created in the second box. Leave the other tabs alone, they ought to be fine. Hit the Okay button. WinCVS should start downloading the entire repository. This may take a little while.

At the end of the process, CVS will say "***** CVS exited normally with code 0 *****" and you will have working code in a sandbox.

Now follow the instructions in README* files to build it. On Win32, it's very easy – open the MSVC++ 6.0 workspace file (ypops.dsw) and hit the build button. Note that you MUST use 6.0, otherwise you cannot commit the workspace or project file to CVS. For Unix/Linux, read src/README.unix-linux.

Congratulations! You're now set up and ready to contribute to the yahoopops project.

Whenever you want to access the CVS repository, you will need to start pageant and double click on the icon in the task bar. Open your private key file (giving the password) and close the screen.

Now start WinCVS. The very first thing you should do is update your sandbox. This assures the code you are working on is the very latest version of the code available (and don't worry, this will NOT overwrite any work you've done but not committed, it will actually attempt to merge them together). To update your sandbox, look in the modules window on the upper left. The first directory under the directory you created will be called "yahoopops", and the folder will have a little checkmark in it. Highlight this folder. Now go to the Modify menu and choose "update selection". Hit the Okay key. After a minute or so, your sandbox will be updated. Assuming there are no conflicts, of course. We'll talk about conflicts in a bit.

You can now minimize WinCVS and start up your compiler. Do whatever work you need to do. When you are done, you need to commit.

Committing code is basically just uploading the changes to the server. Bring up WinCVS again. Make sure to highlight the uppermost level CVS folder (yahoopops). Double check that last sentence, it is IMPORTANT. If you forget to highlight that folder, you will only update a single file or directory. Generally, you want to update the entire module. Now do a triple check. Go to the Modify menu again and select Commit.

You will now get a dialog box. The first thing you need to do is enter a log entry. This is the entry that will tell everyone else what you did. You should ALWAYS, ALWAYS, ALWAYS enter a log message of some sort. Make it short and to the point, but try to describe everything you did in a way end users can understand. Once you finish your log message, hit the OKAY button. The code will then Commit.

Now we run a macro to update the history file. Make sure once again that you have the upper level module selected (yahoopops). Go to the Admin menu and to the Admin Macros entry and then to the Build Changelog Entry and finally select "for module...". You will first be prompted for the CVSROOT. The correct info should already be in the box, so just hit okay. Then you will see "Module To Log". Make sure this says "yahoopops". Then it will ask you for a log file name. Change it to changelog.txt (instead of yahoopops.log, this allows it to be opened as a text file right at the SF site). The final screen is just for options, you can leave the box blank. Hit okay, and the log will be generated.

The last step is to commit the new log. Either highlight the file changelog.txt or the entire module yahoopops. Hit the commit button. For the log entry, you should get the same entry you just made for the initial commit. Leave it as is and press Okay.

That's all there is to it. Except for a couple of hints.

How often to Update / Commit?

You should update, at a very minimum, once per day that you will work on the code, preferably just before you start work. This insures you are working on the most recent code available. If you forget to update before you begin working, you can still update without losing your work. Updating merges code from the server with your version. So your work will still be there in your sandbox after an update.

You should commit when you finish a task and have tested the results. Basic functionality should be working. If you need assistance from another developer on the project, it's ok to commit broken code, but you should use #ifdef's to activate the broken code so that other developers are not impacted.

Conflicts.

CVS attempts to merge changes make with the existing code base. If two people are working on the code, and both of them happen to change the exact same line in their sandbox, and then both of them commit the changes, you will get a conflict (actually, only the second person to commit will get the conflict). CVS will abort the commit and ask you for help in resolving the conflict. It will also tell you the exact lines that have conflicted. You should then merge the changes by hand (this may or may not require discussing the changes with the other coder with whom you have conflicted). Once both of you are satisfied the merged version is okay, you can then commit the new code to the server.

This is why it is critical to always update your code before you start work, and commit as soon as you can. This minimizes the possibility for conflicts. The longer you hang on to uncommitted code, the more likely it will be someone else will change a line you have already changed.
