
The Real-time Simulation of Natural Phenomena: A General Particle
System Built for Wonderland

Qing Da, Jia Xu, and Fanjiang Zeng
Advisor: Yanwen Guo

Department of Computer Science and Technology, Nanjing University, China
{csdaqing,xujianjucs}@gmail.com caiji159@163.com

Figure 1. Application of Particle System:Snow, Rain, Fountain,Fire,Water Vapor and Hlo.

Abstract

Natural phenomena are usually difficult to model and render due to their uncer-
tain shapes and complex physical properties. In our project, we propose a general
particle system, by which we present real-time simulation of six phenomena: snow,
rain, fountain, fire, water vapor and halo. To make the simulation of different phe-
nomena more tractable, our particle system provide a handy extension mechanism
to add physical characteristics to particles. We also give a brief tutorial, showing
how to use our particle system to build your own phenomena. Experimental results
show that realistic scenes of snow, rain, fountain, fire, water vapor and halo can be
rendered in real-time.

1

1. Introduction

Real-time simulation of natural phenomena, such as clouds, snowing, or raining, in a virtual
environment has always been a hotspot in computer graphics and virtual reality. Such phenomena
are universal in our daily life, however, they are usually difficult to model and render due to their
uncertain shapes and complex physical properties. Although many efforts have beem made toward
the real-time simulation of these phenomena, most of them are far from practical use. It is thus
necessary, and to some extent significant, to explore the realtime realistic simulation of these natural
phenomena in the Wonderland virtual world, which will make people feel that their avatars are
walking through in a real outdoor world.

In our early research on this project, we found many natural phenomena could be simulated
using particle system —a method for modeling fuzzy objects such as fire, clouds, and water. To
make full use of the method, we focus on building a general particle system in the Wonderland,
apart from implementing several phenomena described in our proposal. For one thing, we can use
our own particle system to simulate snow, rain, fire and other phenomena. For another, we would
like to provide a general particle system for other developers to extend and build their phenomena
according to their own needs in Wonderland.

In fact, in the 0.5 version of Wonderland, the whole project is created using jMonkey Engine
(JME) instead of java3D, and there is a particle system package in JME. Nevertheless, it is a pity
that it cannot be used straightway in Wonderland. What is worse, it is that discommodious to do
some extending due to the fact that this particle system lacks universality. After reading some
tutorials of Wonderland, we realize that the only way to implement a particle system in Wonderland
is to write our own particle system with MTGame, which is built on the top of JME scene graph and
designed to provide processing model and take advantage of multi-threaded system.

We successfully simulate snow and rain scene using our particle system, and after several at-
tempts, we terminate the simulation of cloud for the following reasons:

1. Simulation of cloud is always being a challenge in computer graphics because clouds do not
have well-defined surfaces and boundaries, contain varying degrees of translucence, and have
amorphous structure changing with time;

2. Wonderland already has a sky box in its scene, and we cannot eliminate this sky box without
changing the source code of Wonderland;

3. The avatar in Wonderland cannot raise her/his head, so what s/he can see from the sky is a very
limited area. It seems that simulation of dynamic cloud in a large area is less meaningful than
what we have expected.

Furthermore, we have used our particle system to build many other fantastic phenomena like
fountain, fire, water vapor and halo.

The organization of the report is as follows. Section 2 describes the overview of particle system.
Section 3 discusses the idea of our designment and the implementation of our particle system.
Section 4 presents the details about how to use our particle system to simulate phenomena like
snow, rain, fountain, fire, water vapor and halo. Section 5 gives a brief tutorial, showing how to use
our particle system to build your own phenomena.

2

2. Overview

Particle system is a technique to simulate certain fuzzy phenomena, which are otherwise very
hard to reproduce with conventional rendering techniques. Examples of such phenomena which are
commonly replicated using particle systems include fire, explosions, smoke, moving water, snow,
dust, grass, or abstract visual effects like glowing trails, magic spells, etc.

The representation of particle system differs in three basic ways from representations normally
used in image synthesis. First, an object is represented not by a set of primitive surface elements,
such as polygons or patches, that define its boundary, but as clouds of primitive particles that define
its volume. Second, a particle system is not a static entity. Its particles change form and move
with the passage of time. New particles will be ”born” and these particles which no longer satisfy
some specified properties like age or location will ”die.” Third, an object represented by a particle
system is not deterministic, since its shape and form are not completely specified. Instead, stochastic
processes are used to create and change an object’s shape and appearance.

A particle system’s position and motion are controlled by what is referred to as an emitter. The
emitter acts as the source of the particles and its location determines where they are generated and
whence they proceed. A point or a plane can be used as an emitter. The emitter has attached to it
a set of particle behavior parameters. These parameters can include the spawning rate (how many
particles are generated per unit of time), the particles’ initial velocity vector (the direction they
are emitted upon creation), particle position, particle size, particle transparency, particle texture
coordinates and many more. It is common for all or most of these parameters to be ”fuzzy” - instead
of a precise numeric value, we specifies a central value and the degree of randomness allowable
on either side of the center. When using a mesh object as an emitter, the initial velocity vector is
often set to be normal to the individual face(s) of the object, making the particles appear to ”spray”
directly from each face.

Individual particles within a particle system move in three-dimensional space and also change
over time in properties like position, size, transparency, and texture coordinates. To move a particle
from one frame to the next is a simple matter of adding its velocity vector to its position vector. To
add more complexity, a particle system also uses an acceleration factor to modify the velocity of
its particles from frame to frame. With this parameter the model designer can simulate gravity and
cause particles to move in parabolic arcs rather than in straight lines. The transparency and size of
particles are controlled in exactly the same way.

In a traditional particle system, a particle is killed when its lift time reached zeros. Other mecha-
nisms, arrange for particles to be killed when they no longer satisfy some certain conditions.

After all the update is complete, each particle is rendered, usually in the form of a textured bill-
boarded quad (i.e. a quadrilateral that is always facing the viewer). However, this is not necessary;
a particle may be rendered as a single pixel in small resolution/limited processing power environ-
ments. 3D mesh objects can also ”stand in” for the particles - a snowstorm might consist of a single
3D snowflake mesh being duplicated and rotated to match the positions of thousands or millions of
particles, even though it is time-consuming. In our implementation, each particle is represented as
a triangle.

3. Implementation: towards a general particle system

In this section, we will give a detailed technical description of our particle system. As a matter
of fact, Wonderland is created based on the JMonkey Engine which already has a particle system

3

package. But when we tried to apply this package in Wonderland, it seems that tough to make a
box move, let alone simulating natural phenomena. In order to make a better use of particle system
and make repeatedly development in Wonderland more convenient, we started to develop our own
particle system using the MTGame engine.

Here, we must state that we do learn a lot from the source code of particle system in JME. It
helps us have a better understanding of the mechanism of particle system. But it is hard to expand
that particle system as it lacks universality and is limited to several applications. Hence, when we
began to design our own particle system, expandability is the foremost factor to be considered.

In the following parts, we will give a brief introduction to the idea of our designment and basic
components of our particle system. If you want to learn more, please refer to the Tutorial section,
and try some applications.

3.1. Particle, ParticleSystem and ParticleProcessor

There are three basic classes in our particle system: Particle, ParticleSystem and ParticleProces-
sor, as shown in Figure 2.

Figure 2. Three basic classes: Particle, ParticleSystem and ParticleProcessor

As the case stands, our particle is represented with a triangle, that is to say, we use 3 vertexes and
corresponding attributes like position, color and texture coordinate to describe the particle. In every
Particle, there is a property set including position, velocity, size, and any other possible properties.
Besides, all the operations with regard to updating and rendering of a particle are packaged in this
class.

In our designment, the geometric information of a particle, like the vertex buffer or texture co-
ordinate buffer which will be directly used to display those particles in the screen, is not stored in
the Particle itself, but the ParticleSystem. The class ParticleSystem is like an captain: it has all the
parameters to generate and control the particles, including the TriMesh data, number of particles,
and all the other parameters to generate the properties of one single particle. This can be clearly
seen in Figure 3.

The baseGeo in ParticleSystem is a TriMesh object which defines a three dimensional object via
a collection of points, colors, normals and textures. The points are referenced via an indices array,
which array instructs the renderer the order in which to draw the points, creating triangles based
on the mode set. In every particle only the minimum index of the three vertexes is recorded, and

4

Figure 3. Organization of ParticleSystem

that’s enough for a particle to compute and update its geometric information through accessing the
baseGeo in ParticleSystem by this index.

In the ParticleSystem, there are following basic parameters to control the whole system:

• isRotateWithView: the flag to determine whether to use bill-boarded technology

• numberOfParticles: the whole number of particles

• releaseRate: in every frame, ratio of new particles’ number to the number of all particles

• minVelocity: the minimum velocity of a particle

• maxVelocity: the maximum velocity of a particle

• minSize: the minimum size of a particle

• maxSize: the maximum size of a particle

• direction: the vector of the main direction of particles

• minAngle: the minimum angle between a true direction and the main direction

• maxAngle: the maximum angle between a true direction and the main direction

• startTransparency: the start transparency of particles

In most particle systems, all the particles are kept facing to the camera, but sometimes it is not
necessary. For instance, when using particle system to simulate the phenomenon of snow, it is
more realistic to keep some snowflakes in non-frontal view. To make this mode optional, we keep a
boolean parameter isRotateWithView.

5

At the beginning, the whole number of all the particles is initialized as soon as the class Pati-
cleSystem is created. All the particles are set to the ready-state at first. In every frame, the number
of new particles is calculated by

numnew = numall × releaseRate

Then these particles are changed into alive-state. The particle system only displays those alive
particles by setting other particles’ transparency to zero.

When a particle is created by the particle system, we should assign the particle basic properties
like velocity, size, and direction. Here the velocity is a scalar and the direction is a normalized
vector. We update the velocity and size in the following way:

velocitynew = velocitymin + rand(0, 1)× (velocitymax − velocitymin)

sizenew = sizemin + rand(0, 1)× (sizemax − sizemin) (1)

To make the particle more realistic, we should make the particle change its direction slightly and
rapidly. When generating a new direction, the key point is how to give a random direction, which
cannot be far away from the main direction. We propose a mechanism as shown in Figure 4.

Figure 4. Here we have ∠AOB = anglemin,∠AOC = anglemax. The main direction is ~OA, a normalized
vector. It is easy to get a random point D between these two circles, then ~OD

| ~OD|
is the random direction we

need.

The next point we would like to make is how to build a particle’s geometric structure, including
the location and texture coordinates of every vertex. The locations of three vertexes of the triangle
are determined by a particle’s position. Firstly we will introduce two vectors, bbX and bbY. These
two vectors, which are orthogonal, determine a flat which the triangles of particles will belong to.
In a simple case when the viewer looks into the direction of (0, 0, 1), then the corresponding bbX
and bbY will be (-1, 0, 0) and (0, 1, 0). We build the triangle using the information above as shown
in Figure 5. For a particle p, assume its size is sizep , then

sizebbX = sizep × bbX
sizebbY = sizep × bbY

6

Figure 5. The locations of three vertexes of the triangle.

Notice that the minimum index is stored in Particle, say,indexp,then the location of the three ver-
texes are defined as

locationA = locationindexp = O + sizebbX − sizebbY
locationB = locationindexp+1 = O − sizebbX + sizebbY

locationC = locationindexp+2 = O − sizebbX − sizebbY

O is the position of the particle. The two vectors, bbX and bbY play an important role in adjusting
the viewer. When the avatar is walking around in the Wonderland, we should make sure that all
the particles will face to the viewer, then we just update bbX (as shown in Figure 6). Generally
speaking, bbY does not need to be updated in Wonderland, since our avatar never raises his head.
But later we will show that there is a situation in which bbY must be updated.

In order to make the particle substantial, we map the three vertexes of the triangle, which rep-
resents the particle, to a specified picture. Thus we need to compute the texture coordinates of the
three vertexes and assign the texture image positions to vertices. The per-vertex assignment of tex-
ture coordinates is the key to mapping a texture image to rendered geometry. During rasterization,
the texture coordinates of a primitive’s vertices are interpolated across the primitive so that each
rasterized fragment making up the primitive has an appropriately interpolated texture coordinate.

The texture of particle is in the left bottom of the whole picture, taking up one-quarter of the area.
In some other particle systems, all the particles are rendered with only one texture. It seems more
convenient and efficient. However, as far as we are concerned, it is necessary to allow the particle
to have different textures so that we could get a better expressiveness. The texture image can be a
matrix of the particular pictures as shown in Figure 8. Every particle can randomly choose one as
its texture.

The last one of three main classes is ParticleProcessor. ParticleProcessor is a subclass of Pro-
cessorComponent. AProcessorComponent is the main building block for application processing in
MTGame. We override a few methods in order to enable the processor to update and render the
particles. We mainly override two methods in the ParticleProcessor: compute() and commit(). The
compute() method is used to do all the calculation that is needed when updating particles , and the
commit() method is used to update jME objects in an MT-safe manner. These methods are called at
every frame by using:

7

Figure 6. All the particles will face to the viewer.

Figure 7. Map the three vertexes to a specified picture

setArmingCondit ion (new NewFrameCondition (t h i s)) ;

to initial this ProcessorComponent.
We will not present the detailed java code of these two methods. Instead, we show some pseu-

docode in the following parts to help understand the mechanism of ParticleProcessor.

8

Figure 8. Map the three vertexes to one of the specified pictures

p u b l i c vo id compute (ProcessorArmingCol l ec t ion c o l l e c t i o n) {
1 . Compute the number of p a r t i c l e s to be c r e a t e d
2 . Tag the Ready p a r t i c l e s o f corresponding q u a n t i t y A l i v e
3 . I f the system i s s e t to r o t a t e with the viewer , update bbX
4 . Update every A l i v e p a r t i c l e s
5 . Tag a l l the Dead p a r t i c l e s Ready

}

p u b l i c vo id commit (ProcessorArmingCol l ec t ion c o l l e c t i o n) {
getWorldManager () . addToUpdateList (ge tTarge t ()) ;

}

3.2. ParticleLocator, ParticlesInitializer, ParticleConstraint and ParticleEffect

To extend our particle system, we design several classes to make this system more universal.
One of them is ParticleLocator, which works as an emitter of particle system, providing a variety
of emission areas. The ParticleLocator is a abstract class, any subclass of which should override its
randomPosition() method.

p u b l i c a b s t r a c t c l a s s P a r t i c l e L o c a t o r {
a b s t r a c t Vector3f randomPosit ion () ;

}

In our system, the most used ParticleLocator is the ParticleBaseLocator. This locator can use a
rectangle, a ring, a triangle and any mesh object as emission area.

Sometimes we need particular initialization of the particle system. For example, when using a
mesh object as an emitter, we don’t want a random direction close to the main direction. On the
other hand, we hope the moving direction of a particle is perpendicular to the surface of the mesh
object, so as to make the particles appear to ”spray” directly from each face. As a result, we should
provide an access to modify the initialization of all the particles. That’s why we design the class
ParticlesInitializer. Literally, this class will give an opportunity to personalize the initialization.

p u b l i c a b s t r a c t c l a s s P a r t i c l e s I n i t i a l i z e r {
p r o t e c t e d a b s t r a c t vo id I n i t i a l i z a t i o n () ;

}

9

In the Initialization() method, we should create particles and generate properties of them , in-
cluding index, position, velocity and texture coordinates. If a ParticlesInitializer is not addedto the
ParticlesSystem, the system will use default initializastion: ParticlesBaseInitializer , a subclass of
ParticlesInitializer. In the default initializer, every property is generated using default method in the
ParticleSystem. Here are parts of the class ParticlesBaseInitializer.
p u b l i c c l a s s P a r t i c l e s B a s e I n i t i a l i z e r ex tends P a r t i c l e s I n i t i a l i z e r {

p r o t e c t e d void I n i t i a l i z a t i o n () {
f o r (i n t k = 0 ; k < getNumberOfPart ic les () ; k++) {

g e t P a r t i c l e s () [k] = new P a r t i c l e (g e t P a r t i c l e S y s t e m () ,
new P a r t i c l e P r o p e r t y S e t ()) ;

g e t P a r t i c l e s () [k] . getPps () . s e t I n d e x (k∗ v e r t s) ;
g e t P a r t i c l e s () [k] . getPps () . s e t P o s i t i o n (g e t P a r t i c l e S y s t e m ()

. getRandomPosit ion ()) ;
g e t P a r t i c l e s () [k] . getPps () . s e t V e l o c i t y (g e t P a r t i c l e S y s t e m ()

. getRandomVeloci ty3f ()) ;
g e t P a r t i c l e s () [k] . getPps () . s e t S i z e (g e t P a r t i c l e S y s t e m ()

. getRandomSize ()) ;

}
}

}
}

In most particle systems, a particle will be killed when its lifetime is over. But there are other
situations in which a particle will die, when some of its properties do not satisfy some constraints
any more; and lifetime is just a special case. The class ParticleConstraint is used to describe this
limitation. Unlike the ParticleLocator and ParticlesInitializer, a particle system can have more than
one ParticleConstraint, and they are organized in the form of array stored in ParticleSystem .
p u b l i c a b s t r a c t c l a s s P a r t i c l e C o n s t r a i n t {

p r o t e c t e d a b s t r a c t boolean i s S a t i s f y (P a r t i c l e p) ;

}

Before a particle update its properties, it will check if it still satisfies all the constraint. If no, it
will be set to dead-state and the updating will be stopped. This is done by the method isSatifyCon-
straints() in Particle.
p r i v a t e boolean i s S a t i f y C o n s t r a i n t s () {
ArrayList<P a r t i c l e C o n s t r a i n t> p c L i s t = g e t P a r t i c l e S y s t e m () . g e t P c L i s t () ;

f o r (P a r t i c l e C o n s t r a i n t pc : p c L i s t)
i f (! pc . i s S a t i s f y (t h i s))

re turn f a l s e ;
re turn true ;

}

In our particle system, there are two basic constraints: ParticleLifeTimeConstraint and ParticleS-
impleCubicConstraint. The former one will add a property of lifetime to every particle, and the
value of lifetime is given by

lifetimep = lifetimemin + rand(0, 1)× (lifetimemax − lifetimemin)

The isSatisfy method will return false if the age of the particle is greater than its lifetime. The
latter one is about space limitation, that is to say, if a particle goes out of a given cubic, the isSatisfy
method will return false.

10

In the default particle system, the update operation of particles is just to calculate the next position
according to current position and velocity. Sometimes we need more complicated operation in the
update stage, so we design the ParticleEffect class. It is the key part when you use this particle
system to build your own phenomena. You can subclass ParticleEffect and override initalEffect()
method and updateParticl() method.

p u b l i c a b s t r a c t c l a s s P a r t i c l e E f f e c t {

p r o t e c t e d a b s t r a c t vo id i n i t a l E f f e c t () ;
p r o t e c t e d a b s t r a c t vo id u p d a t e P a r t i c l (i n t index) ;

}

initalEffect() is called after initialization of the particle system, and updateParticl () method is called
in the update method in Particle as below

p u b l i c vo id update (long counter){

i f (getPps () . g e t S t a t u s () == ALIVE)
f o r (P a r t i c l e E f f e c t pe : g e t P a r t i c l e S y s t e m () . g e t P e L i s t ())

pe . u p d a t e P a r t i c l (getPps () . get Index ()) ;
}

As ParticleConstraint, a particle system can have more than one ParticleEffect, in the form of
array in ParticleSystem. By now we have developed ParticleSnowWindEffect, ParticleAccelera-
tionEffect, ParticoleFadeEffect and ParticleLineEffect, in the next section you will see how we use
these effects to simulate natural phenomena.

4. Application: To build several natural phenomena l

In this section, we will use our particle system to simulate several phenomena, like snow, rain,
fountain, fire, water vapor and halo as you see in the first page of this report. Our applications
are implemented in the form of modules in Wonderland, that is to say, we create a phenomenon
by deploying a module to Wonderland. Our particle system package is also in this module. All
the source code of the following six projects can be found at http://wlandparticles.sourceforge.net.
Here is the list of these projects:

• particles-module-snow.tar.gz

• particles-module-rain.tar.gz

• particles-module-fountain.tar.gz

• particles-module-vapor.tar.gz

• particles-module-fire.tar.gz

• particles-module-halo.tar.gz

They are all standard wonderland modules. To have a view of the real-time effect of our project, all
you need to do is to open them in NetBeans and deploy them to the Wonderland. To make a full
use of our particle system, you can simulate your own phenomenon by inheriting some classes and
overriding some methods. At the same time, you can also change the texture image, if is needed.

11

http://sourceforge.net/projects/wlandparticles/files/particles-module-snow.tar.gz/download
http://sourceforge.net/projects/wlandparticles/files/particles-module-rain.tar.gz/download
http://sourceforge.net/projects/wlandparticles/files/particles-module-fountain.tar.gz/download
http://sourceforge.net/projects/wlandparticles/files/particles-module-vapor.tar.gz/download
http://sourceforge.net/projects/wlandparticles/files/particles-module-fire.tar.gz/download
http://sourceforge.net/projects/wlandparticles/files/particles-module-halo.tar.gz/download

4.1. Snow

The snow is the easiest phenomenon to simulate using particle system. The behavior of snow par-
ticles is relatively simple: falling down. So we use a rectangle overhead as emission area. Particles
are created from this rectangle, then falling down with a little deflection angle (as shown in Figure
9). The texture image is a fuzzy white point. In the physical world, the snow particles do not move

Figure 9. Creating snow particles

in a constant velocity, as a result of the wind and the collision of other snow particles. In our snow
simulation, we do not consider the influence of particles’ collision. We would like to simulate gust,
a sudden blast of wind occasionally. When a gust of wind comes, those particles in the position
where the wind comes from will be affected firstly, and those particles in the position that the wind
goes to will be the last ones to be affected. In fact, the former particles will have a higher velocity
while the latter particles will have a lower one. Figure 10 shows how to determine which particles
are in the location the wind comes from or goes to.We have 4 points in the above picture, K, N, L
and M. Their feet of perpendicular on the direction vector are F, G, A and J. Obviously F and G
will be affected by the wind earlier and have a higher velocity, on the other hand, A and J will be
affected by the wind later and have a lower velocity. We should find some quantity to describe this
property.

Assuming the direction vector is
−→
dir, notice there existλ1, λ2, λ3 and λ4 which satisfy

−−→
OF = λ1

−→
dir

−−→
OG = λ2

−→
dir

−→
OA = λ3

−→
dir

−→
OJ = λ4

−→
dir

So λi could be a parameter to decide the time when a particle is affected by the wind and the
corresponding velocity. In fact, the calculation of λi is so easy that we do not need to compute the
position of foot of perpendicular. Take point K as an example:

λ1 =

−−→
OK ·

−→
dir

|
−→
dir|

=
−−→
OK ·

−→
dir

Notice that the direction vector in our system will be normalized. That’s the main idea of Parti-
cleSnowWindEffect, the detailed implementation can be found in our source code.Figure 11 shows
the result of sonw simulation using our particle system.

12

Figure 10. How to determine which particles are in the location the wind comes from or goes to.

Figure 11. Snow simulation.

4.2. Rain

The initialization of rain is the same as the one of snow, but with a texture image with a gray line.
As for the rendering, we need to do some extensions to simulate rain. In the default setting of our
particle system, the texture of a particle will be presented as Figure 12.a, but what we exactly need
is as shown in Figure 12.b. When we use a texture with a line, we want this line keeping in line with
the direction of motion. This can be solved by updating bbY of the particle system and modifying
the texture coordinates. It is a little complicated, and we will give a main idea of the solution.

In Figure 13.a, ~y is the vector (0, 1, 0), plane A and plane B are parallel to ~y, and they are
perpendicular to each other. Plane A is parallel to the direction of look-in viewer while plane B is

13

Figure 12. Direction of defaut motion and rain motion

Figure 13. Modifying the direction of rain motion

perpendicular to it. ~d is the direction of motion of the particle, ~d1 and ~d2 is the projection of ~d on
plane A and plane B. Then bbY is updated by

−−→
bbY =

~d1

| ~d1|
(2)

The triangle of the particle will be on the plane determined by ~d and ~d1 . The next operation is to
modify the texture coordinates of the particle. Assuming the angle between ~y and − ~d2 is , the new
texture coordinates should be re-computed as shown in Figure 13.b. The detail implementation can
be found in ParticleLineEffect.Figure 14 showes the rain simulation

14

Figure 14. Rain simulation.

4.3. Fountain

To make a better use of ParticleLineEffect, we found another phenomenon made up of water
particles can also be simulated using this technology. It is the fountain. In the fountain simulation,
all the water particles will be emitted from a ring area with a upward direction, slopping inside out
as is shown in Figure 15. In the real world, every particle will be affected by the gravity. As a result,

Figure 15. The emitting direction of water particles.

after these water particles are emitted, they will soon fall down due to the acceleration of gravity.
Hence, we have developed ParticleAccelerationEffect, which will provide a way to put acceleration
of the particle in any direction. Figure 16 showes the fountain simulation

15

Figure 16. Fountain simulation.

4.4. Water vapor

In the default particle system, the transparency of particles will not change, since the lifetime
property is not a necessity. In the simulation of fountain, any particle is set to die when it is below the
horizon. So it has nothing to do with the particles’ lifetime. But sometimes we want the transparency
decreases to zero when its lifetime is over, like simulating water vapor of a cup of coffee. So we
have developed the ParticleFadeEffect, which makes all the particles fade out at the end of lifetime.
Notice that this effect can be used only when a ParticleLiftTimeConstraint is added to the particle
system. Figure 17 shows the result of water vapor simulation.

Figure 17. Water vapor simulation.

4.5. Fire

Fire is another common natural phenomenon which can be simulated well using our particle sys-
tem. As a matter of fact, the inner part of fire has a higher temperature, which makes it seem like
white, while in the outer part, the temperature is relatively lower, so it will turn red. Figure 18

16

shows how the color of fire changes from the inside out. This effect is implemented in Particle-

Figure 18. Different color of fire.

FireEffect. To make the fire more real, we have added fade effect and acceleration effect to the fire
particles.Figure 19 shows the fire simulation.

Figure 19. Fire simulation.

4.6. Halo

A halo is an optical phenomenon produced by ice crystals creating colored or white arcs and spots
in the sky. Many are near the sun or moon but others are elsewhere and even in the opposite part of
the sky. They can also form around artificial lights in very cold weather when ice crystals called dia-
mond dust are floating in the nearby air. Figure 20 is one type of halo. We want to simulate the halo
phenomenon by using the mesh object as emission area, and setting the velocity of every particle to
be normal to the individual face of the mesh object through developing a ParticlesNormInitializer.
In this case, a fade effect is also needed. Figure 21 shows the result.

5. Tutorial: Using our particle system to build your own phenomena

In this section, you will learn how to use our particle system to build your phenomena. Since all
the above applications are implemented in the form of modules of wonderland, you are supposed
to be familiar with the module mechanism of wonderland. Here we will show you how to do your
own application in a standard way.

Firstly, you should visit the main page of our project: http://wlandparticles.sourceforge.net, and
download particles-module-empty.tar.gz. Then Type the command :

t a r z x f p a r t i c l e s−module−empty . t a r . gz

17

http://sourceforge.net/projects/wlandparticles/files/particles-module-empty.tar.gz/download

Figure 20. One example of halo.

Figure 21. Halo simulation.

to decompress this file(if you are a Windows user, you can use WinRAR to view the file). Open this
project in NetBeans, you will see the structure of this module as shown in Figure 22. Now we will
use this to build a rotary snowflake phenomenon.

1. Rename the directory to particles-module-snowflake.
2. Rename the name of project to particles-module-snowflake in NetBeans.
3. Modify the module name in my.module.properties as

18

Figure 22. Structure of the empty module.

#
Property : module . name (required)
The unique name of the module
#
module . name= p a r t i c l e s−module−snowf lake

4. Modify the getDisplayName() method in ParticlesCellFactory (in pakage org.jdesktop.wonderland.modules.shape.client)
as:

p u b l i c S t r i n g getDisplayName () {
re turn ” P a r t i c l e s C e l l Snowf lake ” ;

}

5. In this case, we will use a texture image of snowflake which follows the rule we describe be-
fore. Add this file (snowflake.png) shown in Figure 23 to the directory /particles-module-snowflake/art.

Figure 23. Snowflake.

6. Modify the getDefaultCellServerState() method in ParticlesCellFactory (in pakage org.jdesktop.wonderland.modules.shape.client)
as

p u b l i c <T extends C e l l S e r v e r S t a t e> T
g e t D e f a u l t C e l l S e r v e r S t a t e (P r o p e r t i e s props) {

P a r t i c l e s C e l l S e r v e r S t a t e s t a t e = new P a r t i c l e s C e l l S e r v e r S t a t e () ;

19

s t a t e . setTextureURI (” wla : / / p a r t i c l e s −module−s n o w f l a k e / s n o w f l a k e . png ”) ;
re turn (T) s t a t e ;

}

7. Open ParticlesCellRenderer in pakage org.jdesktop.wonderland.modules.shape.client.jme.cellrenderer,
and insert the following code before return node in createSceneGraph method.

i n t num = 2500 ;
P a r t i c l e S y s t e m ps = new P a r t i c l e S y s t e m (num , 2 , 2) ;
ps . a t t a c h T o E n t i t y (e n t i t y) ;
ps . s e t R e n d e r S t a t e (bS ta te) ;
ps . s e t R e n d e r S t a t e (t S t a t e) ;
ps . s e t R e n d e r S t a t e (z S t a t e) ;

ps . se t IsRotateWithView (f a l s e) ;
ps . s e t R e l e a s e R a t e (0 . 2 5 f) ;
ps . s e t M i n V e l o c i t y (0 . 0 5 f) ;
ps . se tMaxVeloc i ty (0 . 1 2 f) ;
ps . se tMinSize (0 . 0 6 f) ;
ps . setMaxSize (0 . 1 0 f) ;
ps . s e t D i r e c t i o n (new Vector3f (0 , −1 , 0)) ;
ps . setMaxAngle (0 . 2 f) ;

ps . s e t I n i t i a l A r e a (new P a r t i c l e B a s e L o c a t o r (new Rectang le (
new Vector3f (2 0 , 1 5 , 2 0) , new Vector3f (−20 ,15 ,20)
, new Vector3f (2 0 , 1 5 , −2 0)))) ;
ps . a d d P a r t i c l e C o n s t a i n t (new P a r t i c l e S i m p l e C u b o i d C o n s t r a i n t (
new Vector3f (−100 f ,0 ,−100 f) , new Vector3f (100 f , 1 0 0 f , 1 0 0 f))) ;

ps . i n i t i a l P a r t i l c e S y s t e m () ;
ps . s t a r t () ;

The parameter num is the number of particles, here we will use 2500 particles to simulate the
snowflake. Noticle we use ParticleSystem(num,2,2) since the texture is a 2*2 matrix of single
texture image. We set isRotateWithView to false since we want to see the effect of snowflake. The
follow lines are used to set parameters of the particle system, like the release rate, minimun velocity,
etc. Our emission area will be a rectangle and we use a ParticleSimpleCuboidConstraint to restrict
the particles.

The last operationyou need to do is to initialze and start the particle system. Build and deploy
this project to the wonderland after the server successfully starts. Create Particle Cell Snowflake in
Cell Palette as Figure 24. Now you get your own phenomenon(Figure 25):

8. Write a ParticleRotationEffect. We hope particles can rotate when they are falling down, and
this can be implemented by creating a ParticleRotationEffect.

p u b l i c c l a s s P a r t i c l e R o t a t i o n E f f e c t ex tends P a r t i c l e E f f e c t {
p r i v a t e Vector3f [] r o t a t i o n a l A x i s ;
p r o t e c t e d void i n i t a l E f f e c t () {

g i v e every p a r t i c l e a random r o t a t i o n a l a x i s
}
p r o t e c t e d void u p d a t e P a r t i c l (i n t index) {

r o t a t e the p a r t i c l e denoted by index round i t s r o t a t i o n a l a x i s
}

}

20

Figure 24. Create Particle Cell Snowflake in Cell Palette.

Figure 25. Snowflake simulation

The detail code of ParticleRotationEffect can be found in particles-module-snowflake.tar.gz. The
last thing is just to add this effect to the particle system by

ps . a d d P a r t i l c e E f f e c t (new P a r t i c l e R o t a t i o n E f f e c t ()) ;

21

http://sourceforge.net/projects/wlandparticles/files/particles-module-snowflake.tar.gz/download

Figure 26 shows the result. Because the static picture cannot show the motion of particles, if you
want to have a better understanding, please download this project and run it in your wonderland
server.

Figure 26. Snowflake simulation with rotation

6. Acknowledge

This work was supported by Sun China Innovation Program-NJU01.We are especially grateful
to engineers from Sun, Dr. Jordan Slott, Mr. Kevin Li, Mr. Jason Tong and Ms. Yang Wang, for
their stimulating suggestions and invaluable help for our work. We owe our deepest thanks to Prof.
Yangwen Guo, for his insightful comments and infinite patience.

22

	1 . Introduction
	2 . Overview
	3 . Implementation: towards a general particle system
	3.1 . Particle, ParticleSystem and ParticleProcessor
	3.2 . ParticleLocator, ParticlesInitializer, ParticleConstraint and ParticleEffect

	4 . Application: To build several natural phenomena l
	4.1 . Snow
	4.2 . Rain
	4.3 . Fountain
	4.4 . Water vapor
	4.5 . Fire
	4.6 . Halo

	5 . Tutorial: Using our particle system to build your own phenomena
	6 . Acknowledge

