
The real-time simulation of natural phenomena
--A general particle system built for Wonderland

2010-01-21

Supervisor

Yanwen guo(郭延文) ywguo@nju.edu.cn

Team member

Qing Da (笪庆) csdaqing@gmail.com

Jia Xu (许佳) xujianjucs@gmail.com

Fanjiang Zeng (曾繁江) zeng@smail.nju.edu.cn

All codes and documents can be found at our home page

http://wlandparticles.sourceforge.net/

Contents

Introduction1

Overview 2

Implementation3

Application4

Tutorial5

Acknowledgement6

Introduction

 Real-time simulation of natural phenomena, such

as clouds, snowing, or raining, in a virtual

environment has always been a hotspot in

computer graphics and virtual reality.

 It is necessary, and to some extent significant, to
explore the realtime realistic simulation of these
natural phenomena in the Wonderland virtual
world

Introduction

 In our early research on this project, we found

many natural phenomena could be simulated

using particle. To make full use of the method, we

focus on building a general particle system in the

Wonderland, apart from implementing several

phenomena described in our proposal.

Introduction

 We successfully simulate snow and rain scene

using our particle system, Furthermore, we have

used our particle system to build many other

fantastic phenomena like fountain, fire, water

vapor and halo.

 Some of them can be seen at the beginning of

this slides.

Introduction

 After several attempts, we terminate the

simulation of cloud for the following reasons:

Simulation of cloud is very difficult;

Wonderland already has a sky box in its scene

The avatar in Wonderland cannot raise her/his

head, so what s/he can see from the sky is a very

limited area.

Overview

 Particle system is a technique to simulate certain
fuzzy phenomena, which are otherwise very hard
to reproduce with conventional rendering
techniques. Examples of such phenomena which
are commonly replicated using particle systems
include fire, explosions, smoke, moving water,
snow, dust, grass, or abstract visual effects like
glowing trails, magic spells, etc.

 More about particle system can be found in our
detail technical report.

Implementation

 In this section, we will give a detailed technical
description of our particle system.

 In the following parts, we will give a brief
introduction to the idea of our designment and
basic components of our particle system. If you
want to learn more, please refer to the Tutorial
section, and try some applications

Implementation

 There are three basic classes in our particle

system: Particle, ParticleSystem and

ParticleProcessor

Implementation

 In our designment, the geometric information of a
particle, like the vertex buffer or texture
coordinate buffer which will be directly used to
display those particles in the screen, is not stored
in the Particle itself, but the ParticleSystem.

Implementation

Implementation

 In the ParticleSystem, there are following basic

parameters to control the whole system:

 isRotateWithView: the flag to determine whether

to use bill-boarded technology

 numberOfParticles: the whole number of particles

 releaseRate: in every frame, ratio of new

particles’ number to the number of all particles

 minVelocity: the minimum velocity of a particle

 ….

Implementation

 At the beginning, the whole number of all the

particles is initialized as soon as the class

PaticleSystem is created. All the particles are set

to the ready-state at first. In every frame, the

number of new particles is calculated by

new allnum num releaseRate

Implementation

 When a particle is created by the particle system,

we should assign the particle basic properties like

velocity, size, and direction. Here the velocity is a

scalar and the direction is a normalized vector.

We update the velocity and size in the following

way:

min max min(0,1) ()newvelocity velocity rand velocity velocity

min max min(0,1) ()newsize size rand size size

Implementation

 To make the particle more realistic, we should

make the particle change its direction slightly and

rapidly. When generating a new direction, the key

point is how to give a random direction, which

cannot be far away from the main direction.

Implementation

 The next point we would like to make is how to

build a particle’s geometric structure, including the

location and texture coordinates of every vertex.

 Firstly we will introduce two vectors, bbX and

bbY. These two vectors, which are orthogonal,

determine a flat which the triangles of particles

will belong to.

Implementation

 O is the position of the particle. For a particle p,

assume its size is , then

p

p

sizebbX size bbX

sizebbY size bbY

Implementation

 Notice that the minimum index is stored in

Particle, say, ,then the location of the three

vertexes are defined as

1

2

3

3

p

p

p

A index

B index

C index

location location O sizebbX sizebbY

location location O sizebbX sizebbY

location location O sizebbX sizebbY

Implementation

 The two vectors, bbX and bbY play an important

role in adjusting the viewer. When the avatar is

walking around in the Wonderland, we should

make sure that all the particles will face to the

viewer, then we just update bbX

Implementation

 we map the three vertexes of the triangle, which

represents the particle, to a specified picture.

Then we need to compute the texture coordinates

of the three vertexes and assign the texture

image positions to vertices.

Implementation

 It is necessary to allow the particle to have

different textures so that we could get a better

expressiveness. The texture image can be a

matrix of the particular pictures. Every particle

can randomly choose one as its texture.

Implementation

 The last one of three main classes is

ParticleProcessor. ParticleProcessor is a subclass of

ProcessorComponent.

 We override two methods in the ParticleProcessor:

compute() and commit().

 The compute() method is used to do all the

calculation that is needed when updating particles ,

and the commit() method is used to update jME

objects in an MT-safe manner.

Implementation

ParticleLocator, ParticlesInitializer,

ParticleConstraint and ParticleEffect

 To extend our particle system, we design several

classes to make this system more universal. One of

them is ParticleLocator, which works as an emitter

of particle system, providing a variety of emission

areas.

Implementation

ParticleLocator, ParticlesInitializer,

ParticleConstraint and ParticleEffect

 ParticlesInitializer will give an opportunity to

personalize the initialization.

Implementation

ParticleLocator, ParticlesInitializer,

ParticleConstraint and ParticleEffect

 In most particle systems, a particle will be killed

when its lifetime is over. But there are other

situations in which a particle will die, when some of

its properties do not satisfy some constraints any

more; and lifetime is just a special case. The class

ParticleConstraint is used to describe this limitation.

Application

 In this section, we will use our particle system to

simulate several phenomena, like snow, rain,

fountain, fire, water vapor and halo

 Our applications are implemented in the form of

modules in Wonderland

Application

Snow

 The snow is the easiest phenomenon to simulate

using particle system. We use a rectangle overhead

as emission area. Particles are created from this

rectangle, then falling down with a little deflection

angle. The texture image is a fuzzy white point.

Application

Snow

 In the physical world, the snow particles do not move

in a constant velocity, as a result of the wind and the

collision of other snow particles. In our snow

simulation, we do not consider the influence of

particles’ collision. We would like to simulate gust, a

sudden blast of wind occasionally.

Application

Snow

 When a gust of wind comes, those particles in the

position where the wind comes from will be affected

firstly, and those particles in the position that the

wind goes to will be the last ones to be affected. In

fact, the former particles will have a higher velocity

while the latter particles will have a lower one. Next

figure shows how to determine which particles are in

the location the wind comes from or goes to.

Application

Snow

Application

Snow

 result

Application

Rain

 The initialization of rain is the same as the one of

snow, but with a texture image with a gray line. In

the default setting of our particle system, the texture

of a particle will be presented as a, but what we

exactly need is as shown in b

Application

Rain

 This can be solved by updating bbY of the particle

system and modifying the texture coordinates.

Application

Rain

 It is a little complicated, you may get more details

about it In our report. (The detail implementation

can be found in ParticleLineEffect.)

Here is the result.

Application

Rain

Application

Fountain

 To make a better use of ParticleLineEffect, we

found another phenomenon made up of water

particles can also be simulated using this

technology.

 It is the fountain

Application

Fountain

 In the fountain simulation, all the water particles will

be emitted from a ring area with a upward direction,

slopping inside out

Application

Fountain

 Hence, we have developed ParticleAccelerationEffect,

which will provide a way to put acceleration of the

particle in any direction.

Application

Fountain

 result

Application

Water vapor

 Sometimes we want the transparency decreases to

zero when its lifetime is over, like simulating water

vapor of a cup of coffee. So we have developed the

ParticleFadeEffect.

 This can be used to simulate the water vapor.

Application

Water vapor

 result

Application

Fire

 Fire is another common natural phenomenon which

can be simulated well using our particle system.

 As a matter of fact, the inner part of fire has a higher

temperature, which makes it seem like white, while in

the outer part, the temperature is relatively lower, so it

will turn red

Application

Fire

 This effect is implemented in ParticleFireEffect. To

make the fire more real, we have added fade effect

and acceleration effect to the fire

 Here is the result

Application

Fire

Application

Halo

 A halo is an optical phenomenon produced by ice

crystals creating colored or white arcs and spots in the

sky. Many are near the sun or moon but others are

elsewhere and even in the opposite part of the sky.

Application

Halo

 We want to simulate the halo phenomenon by using

the mesh object as emission area, and setting the

velocity of every particle to be normal to the individual

face of the mesh object through developing a

ParticlesNormInitializer. In this case, a fade effect is

also needed.

Application

Halo

 result

Tutorial

 In this section, you will learn how to use our particle

system to build your phenomena. Since all the above

applications are implemented in the form of modules

of wonderland, you are supposed to be familiar with

the module mechanism of wonderland. Here we will

show you how to do your own application in a

standard way.

Tutorial

 Firstly, you should visit our project home page and

download particles-module-empty.tar.gz.

 Open this project in NetBeans, you will see the

structure of this module as shown

Tutorial

 Now we will use this to build a rotary snowflake

phenomenon.

 1.Rename the directory to particles-module-snowflake.

 2.Rename the name of project to particles-module-

snowflake in NetBeans.

Tutorial

 3. Modify the module name to particles-module-

snowflake

 4. Modify the getDisplayName() method in

ParticlesCellFactory as

public String getDisplayName() {

return "Particles Cell Snowflake";

}

Tutorial

 5. In this case, we will use a texture image of

snowflake which follows the rule we describe before.

Add this file (snowflake.png) to the directory

 /particles-module-snowflake/art.

Tutorial

 6. Modify the getDefaultCellServerState() method

public <T extends CellServerState> T getDefaultCellServerState(Properties props) {

ParticlesCellServerState state = new ParticlesCellServerState();

state.setTextureURI(“wla://particles-module-snowflake/snowflake.png”);

return (T)state;

}

Tutorial

 7. Write a ParticleRotationEffect. We hope particles

can rotate when they are falling down, this can be

realized by create a ParticleRotationEffect.

public class ParticleRotationEffect extends ParticleEffect{

private Vector3f[] rotationalAxis;

protected void initalEffect() {

give every particle a random rotational axis

}

protected void updateParticl(int index) {

rotate the particle denoted by index round its rotational axis

}

…

}

Tutorial

 8. Open ParticlesCellRenderer and insert the following

code before return node in createSceneGraph

method.

int num = 2500;

ParticleSystem ps = new ParticleSystem(num,2,2);

ps.attachToEntity(entity);

ps.setRenderState(bState);

ps.setRenderState(tState);

ps.setRenderState(zState);

ps.setIsRotateWithView(false);

ps.setReleaseRate(0.25f);

ps.setMinVelocity(0.05f);

Tutorial

ps.setMaxSize(0.10f);

ps.setDirection(new Vector3f(0,-1,0));

ps.setMaxAngle(0.2f);

ps.setInitialArea(new ParticleBaseLocator(new Rectangle(

new Vector3f(20,15,20),new Vector3f (-20,15,20)

,new Vector3f (20,15,-20))));

ps.addParticleConstaint(new ParticleSimpleCuboidConstraint(

new Vector3f (-100f,0,-100f),new Vector3f (100f,100f,100f)));

ps.addPartilceEffect(new ParticleRotationEffect());

ps.initialPartilceSystem();

ps.start();

Tutorial

 8. Build and deploy this project to the wonderland after

the server successfully starts. Create Particle Cell

Snowflake in Cell Palette.

Tutorial

 result

Tutorial

 The detail code can be found at our home page

Acknowledgement

 This work was supported by Sun China Innovation

Program-NJU01.We are especially grateful to

engineers from Sun, Dr. Jordan Slott, Mr. Kevin Li, Mr.

Jason Tong and Ms. Yang Wang, for their stimulating

suggestions and invaluable help for our work. We owe

our deepest thanks to Prof. Yangwen Guo, for his

insightful comments and infinite patience.

