ViMax is an open-source framework for performing large-scale multi-modal vision-language modeling and reasoning by combining powerful image encoders with advanced language models to solve complex visual tasks. It integrates components like visual encoders, cross-modal fusion techniques, and reasoning modules so that users can go beyond simple captioning or classification to perform tasks such as visual question answering, multi-image inference, and structured scene understanding. ViMax’s design accommodates large image sets and supports retrieval augmentation, enabling it to work with external image databases, supplementary metadata, and semantic search to enhance context awareness. The system aims to bridge foundational vision backbones and generative language models through adapters and fusion layers that maximize both signal integration and reasoning depth, and includes utility pipelines for training, evaluation, and deployment.
Features
- Multi-modal fusion of vision and language
- Support for large image collections and retrieval augmentation
- Visual question answering with rich context
- Dense prediction and hierarchical reasoning
- Training and evaluation pipelines included
- Adaptable backbone and adapter integrations