torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, which often change the interface of the forward, but instead specify the module path(s) in the yaml file. In addition to knowledge distillation, this framework helps you design and perform general deep learning experiments (WITHOUT coding) for reproducible deep learning studies. i.e., it enables you to train models without teachers simply by excluding teacher entries from a declarative yaml config file.

Features

  • Supports various knowledge distillation strategies
  • Works with any PyTorch-based deep learning models
  • Reduces model size while maintaining accuracy
  • Allows multi-stage and multi-teacher distillation
  • Provides flexible configurations for different architectures
  • Compatible with Hugging Face Transformers

Project Samples

Project Activity

See All Activity >

License

MIT License

Follow TorchDistill

TorchDistill Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of TorchDistill!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Programming Language

Python

Related Categories

Python Natural Language Processing (NLP) Tool

Registered

2025-01-23