
TANGO Box V9
Virtual Machine User Manual

Date: October 2015 Version: 1.0

Table of Contents

Table of Contents
Introduction .. 1

Overview of Tango (Box) .. 2

Setting up your System .. 3

Installing Virtual Box ... 3

Download TANGO Box ... 3

Running TANGO Box .. 4

Whetting your Appetite A Quick Out-of-the Box Experience Experiencing a TANGO
System running a Motor Simulator ... 6

Using Jive ... 6

Using iTango .. 9

Using Taurus .. 10

Using JDraw ... 12

TANGO Box Tools Overview ... 15

The Elegant TANGO Architecture: A Quick Overview .. 17

TANGO is Programmer Friendly! ... 20

It is Object Oriented .. 20

Device Attributes, Properties, Commands and State ... 22

Python powered tools: iTango, Sardana & Spock ... 23

Simple and powerful GUI building ... 23

Putting it into Practice: Writing a Simple Device Server 27

Historical DataBase: HDB++ .. 37

Tips and Tricks .. 39

References

[1] Virtual Box (h ttps://www.virtualbox.org/wiki/Downloads

[2] TANGO Box V9.0 http://sourceforge.net/projects/tango-cs/files/)

[3] PyTANGO
(http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytan
go/latest/index.html)

[4] iTango Console
(http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytan
go/latest/itango.html)

Pag
e

http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/itango.html
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/itango.html
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/index.html
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/pytango/latest/index.html
http://sourceforge.net/projects/tango-cs/files/?source=navbar
https://www.virtualbox.org/wiki/Downloads

Introduction

Control systems for large scientific and industrial facilities are highly complex
systems. They control hundreds or thousands of devices of many different types,
through a variety of interfaces. Good monitoring and control is mission critical to
these facilities.

The TANGO control system is a free, open source control system that is being
collaboratively developed between the ALBA, ANKA, DESY, Elettra, ELI-BEAMS,
ELI-ALPS, ESRF, FRM II, INAF, MAX-IV, Solaris and Soleil Institutes, with the
specific aim of managing this complexity in a contemporary and powerful
fashion.

Tango is object-oriented and distributed. This makes it both flexible and
developer friendly.

The purpose of the Tango Box Virtual Machine is to give you a fast, out-of-the-box
experience of a working Tango system. There is a limited set of shortcuts to
essential Tango tools on the virtual machine desktop. Together with the
introductory movie video and this user manual, they allow you to experience the
power and elegance of the Tango system first hand. After this "guided tour" of the
Tango system, Tango Box is an excellent tool to make further explorations on your
own, to use it for demonstration purposes, to make studies, proof-of-concepts and
the like. This way, out of this little box, another great, sophisticated control
system for the real world gets maybe born!

Pag
e

Overview of Tango (Box)

TANGO consists of a number of main parts: one is a software bus, or TANGO
kernel. It is a system that lets TANGO clients monitor and control equipment
through TANGO device servers. This communication between clients and servers
can be both synchronous, asynchronous or event driven.

Another part is the central services. A configuration database contains all
configuration data (runtime attribute and property values that differ between
instances of the same device type/class, do not belong in code, and need to be
managed in central repositories for these large systems to be maintainable). An
archiving service allows historic values of the attributes to be stored and
retrieved. A snapshot tool allows a system state to be saved to persistent
storage and to restore that state to the machine. An alarm system signals
parameter values approaching or reaching values outside normal operating
ranges and potentially damaging to the machine. Finally a diagnostic logging
system logs diagnostic messages for later analysis.

A third major part is a set of tools that allow administration of the TANGO system.
It is through these tools that we will experience the running TANGO system on
the Tango Box VM. Jive is TANGO's database browser, providing hierarchic
access to TANGO's Servers, Devices and Classes. Astor is the Tango Manager for
controlling, starting and stopping TANGO device servers. AtkMoni is a tool for
charting and monitoring device variables (attributes). A complete list is in Table
1: Summary of key TANGO Box tools.

A set of tools worth mentioning in its own right is Sardana. Sardana is a
standard generic user environment built on top of TANGO, specifically for
realizing control applications that require sequencing of fast and slow controls,
e.g. beamlines and their experiments. It is exposed through the Spock and
iTango shortcuts on the Tango Box desktop.

Pag
e

Setting up your System

Installing Virtual Box

TANGO Box is a virtual machine that is based on the Ubuntu operating system
and the easiest way to run TANGO Box is to use Virtual Box which allows you to
run images of different operating systems on your existing system. Download
Virtual Box (https://www.virtualbox.org/wiki/Downloads) and install according to
the instructions provided.

Download TANGO Box

The TANGO Box image which is run in Virtual Box can be downloaded from the
TANGO website TANGO Box V9.0 http://sourceforge.net/projects/tango-cs/files/).

Note: The extraction from the archive can take several minutes.

Pag
e

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Running TANGO Box

Figure 1: Virtual Box opening screen

1. Launch Virtual Box → New Virtual Machine.

2. Choose Linux, Ubuntu 64 bit and name e.g. tango9 :

Pag
e

3. Select settings according to your machine – recommended memory
setting of 4 MB

4. Select the disk image you download and unzipped – tango9-vm.vdi:

5. Start the TANGO9 Virtual Machine and discover the wonderful world
of TANGO9 :

Pag
e

Whetting your Appetite
A Quick Out-of-the Box Experience
Experiencing a TANGO System running a Motor Simulator

Using Jive

1. Launch Jive from the Desktop.

Figure 3: Jive screen showing hierarchy of device server (SimMotor), device server
instance (tangobox), device class (SimMotor) and device class instance (sim/motor/1)

Pag
e

2. Click on SimMotor → TANGObox.

3. Right click on sim/motor/1 and select Monitor Device.

4. Repeat above to open a second “Monitor Device” window for
sim/motor/1.

5. This opens the auto-generated device client.

Figure 4: AtkPanel showing attributes for sim/motor/1. The position of the motor can be
changed by using the controls indicated by the blue arrow.

6. Change the motor position using the controls indicated by the blue
arrow.

Pag
e

Figure 5: AtkMoni (Trends) showing the trend over time of the Temperature attribute for
sim/motor/1.

7. You can view how the motor position is changing by launching
AtkMoni. Click on Add New Attribute (toolbar button) and select

in the tree: sim → motor → 1 → position. Then right-click on the
position attribute and choose "Add to Y1". Then click on Start
Monitoring (toolbar button). Now, if you change the position in

Jive, you can see the position change in AtkMoni.

Pag
e

Using iTango

Figure 6: iTango terminal

1. Launch iTango

2. Enter (copy) the command into the iTango console.

PyTango.DeviceProxy("sim/motor/1").position=4

Motor can be seen to be moving in the ATKPanel.

Tip

When typing, try pressing <tab>. Since iTango has
autocomplete embedded you get a list of possible
completions. Example:

PyTango.Release.<tab>

Gets a list of all members of PyTango.Release class. Equally:

PyTango.DeviceProxy("sim<press tab key>

Gives a list of available runtime options
sim/motor/1 sim/motor2 sim/motor3

Pag
e

Note

We put the command in line of Python code to save you a
copy-paste.
The following works equally well of course:

motor1 = PyTango.DeviceProxy("sim/motor/1")
motor1.position = 4

Using Taurus

As we will see further, Taurus is a library to create GUI's for the TANGO system in
Python. It comes with a collection of demos. We will use one of them as a starting
point for this demo.

In a new terminal window type:

taurusform sim/motor/1

This launches the form below, which provides again access to the various motor
attributes. We leave it to the reader to explore the GUI, change values and
observe the synchronization via the TANGO device server of these two TANGO
device clients: the ATK-based monitor panel and the Taurus based form.

Pag
e

Figure 7: Taurus Form for sim/motor/1

Pag
e

Using JDraw

JDraw is the TANGO synoptic editor. You can use to construct (draw) synoptic
screens, i.e. GUI's with graphical representation of the physical layout of the
device to be controlled by TANGO.

1. Launch JDraw

2. Open the file synoptic demo.jdw.

Pag
e

You see a graphical representation of a beam line with its optics elements. To
provide a live demo of TANGO synoptic screens, the right-most slit is already
associated with the State of our sim/motor/1 from the previous examples

3. You can see the associated object by double-clicking on the slit. The
Object name field in the dialog that opens reads: sim/motor/1/State.

4. Before we go to live view let us associate the leftmost slit (slit2) as
well with a motor: sim/moter/2. Double-click it and type in Object
name: sim/motor/2/State and click apply

5. Go to Views -> Tango Synoptic view. Now if we change the position
of any of both motors in ATKPanel, we see that the slit in the
synoptic view indicates that a movement (blue color) is occurring.

Pag
e

Pag
e

TANGO Box Tools Overview

Now that you have had a taste for running TANGO, we can examine some of the
tools that are packaged with TANGO. These tools have shortcuts on the desktop
and are summarised in Table 1.

Table 1: Summary of key TANGO Box tools

Tool Purpose

Astor/Start
er

The Astor/Starter pair of applications will help you to administer
your control system (Starting/Stopping device server, checking
them, etc.). Astor is a graphical application and Starter is the
name of the device server used by Astor.

ATK TANGO Application ToolKit (ATK) is a java graphical layer for
building GUIs for TANGO.

ATKPanel ATKPanel is a generic application which displays panels allowing
you to execute any device commands or to read/write any device
attributes

ATKMoni AtkMoni is the tool to view how your data is changing.

Eclipse Widely used development environment

iTango iTango is a PyTANGO CLI based on IPython. It is designed to be
used as an IPython profile.

JDraw Synoptic editor to draw your synoptic(s) to control TANGO devices
(To be used with ATK)

Jive The TANGO database browser and device testing tool

Netbeans Alternate development environment

Pogo Allows you to create/update TANGO device classes in C++

Spock Spock is an iTango based CLI (command line interface) for
Sardana.

Spock has been extended in Sardana to provide a customized
interface for executing macros and automatic access to Sardana
elements.

TaurusDesi
gner

Powerful TANGO client GUI designer. It is a Qt designer application
customized for taurus

Pag
e

Pag
e

The Elegant TANGO Architecture: A Quick
Overview

Figure 8: Overview of the TANGO Architecture

The following provides a short description of the main architectural elements of
the TANGO system to provide the system context. In the next chapter we look
into more detail into those elements that are most relevant to the
programmer/user of the TANGO system: the OO aspects.

TANGO is based on the concepts of object oriented and service oriented
approaches to software architecture. The object model in TANGO supports
methods, attributes and properties. In TANGO all objects are representations of
devices.

TANGO is primarily used to provide network access to hardware. Hardware
access is programmed in a process called a Device Server. The device server
implements device classes which implement the hardware access. At runtime the
device server creates devices which represent logical instances of
hardware. Clients "import" the devices and send requests to the devices using
the TANGO protocol.

The object model in TANGO supports methods, attributes and properties. In
TANGO all objects are representations of devices. The devices can be on the
same computer or distributed over a number of computers interconnected by a
network. The network communication is done using CORBA. Communication can

Pag
e

be synchronous, asynchronous or event driven. Configuration data is
stored in a database. Programming support is provided for C++, Java and
Python. Clients can be written in all three languages. Servers can also be written
in C++, Java or Python. TANGO provides a kernel API which hides all the
details of network access and provides object browsing, discovery and
security features.

Pag
e

Some ready to use graphical applications (DeviceTree, ATKPanel, …) allow you
to graphically display data coming from your device(s). Graphical layers above
the kernel API have been developed to reduce specific graphical client software
development time. One exists for Java SWING (ATK), another and another one for
Python PyQt (Taurus).

TANGO uses CORBA (synchronous and asynchronous communication) and
zeromq (event based communication) and is a distributed control system that
can run on one or many machines.

TANGO uses the omniorb implementation of CORBA as its network protocol. The
client-server model is the basic communication model. Communication between
clients and servers can be synchronous, asynchronous or event driven.

Pag
e

https://www.tango-controls.org/static/taurus/latest/doc/html/index.html
https://www.tango-controls.org/download/index_html#atk

TANGO is Programmer Friendly!

It is Object Oriented

TANGO uses concepts (& constructs) from object oriented programming
languages to help manage the inherent complexity of large control systems.

For example there will be many instances of the same piece of hardware
equipment in the entire system, for example magnet power supplies. Where at
runtime the currents they supply will be different, they obviously share many
properties that are the same (e.g. you interface to them in the same way). In OO
this static commonality is captured in a Class and the differences in run-time
objects or instantiations of that class. That is exactly what TANGO provides for us.
TANGO Device Classes and TANGO Device Instances. The SimMotor that we
saw in the Wetting Your Appetite chapter is an example of a Device Class,
"sim/motor/1", the name of a Device Instance.

Being able to build hierarchies of things (objects) of specific types is another
powerful concept of the OO world. A TANGO system has such a hierarchy and it
supports its distributed nature. Here we introduce the concept of a TANGO
Device Server (DS). Essentially the DS is the process in which Device Instances
(of Classes) are running. The TANGO system allows setting it up in this flexible
way:

Pag
e

Pag
e

So, one Device Server (process) can run multiple instances of multiple device
classes!

(Note: the dotted line around the second instance is because in your Tango Box,
there is only one instance at start-up, but there could be more)

If we apply this to our example of the multiple power supplies, we see TANGO
offers us many ways to set up this system, depending on the physical layout and
other parameters of the machine. If two power supplies are close to each other,
we can control them from one PC (crate), with one device server process, or with
two device servers, on the same host machine. If they are far from each other,
we could control them with two device servers on two separate host machines.
TANGO is not putting any restrictions on our system configuration here. And for
the TANGO clients, this is all transparent. An important consequence is also we
can redesign the physical layout of the system, without a big impact on the
software clients.

Device Attributes, Properties, Commands and State

Encapsulating data and behaviour into single entities is another important OO
concept; it is an improvement over how you can model, represent the real-world
in your code, compared to older programming techniques.

TANGO uses these concepts to represent the physical equipment the system is
controlling. But as we will see it goes beyond having the data in data members
and the behaviour invoked through methods: A Tango device class has additional
provisions that are essential in the domain of control systems.

First there is the distinction between attributes and properties. In general OO
terminology they are used interchangeably. In TANGO, the attribute is used to
represent process variable, physical values like current, voltage, temperature, …
they are supposed to vary continuously. Properties are much more static, they are
the things you need to set up once for the software device to work, to connect
properly to the physical equipment etc. Typical example is a IP address.

Attributes have a set of domain-specific meta-data. Just to name a few important
ones: the physical unit (Ampere, mm, …), range values, alarm values.

Commands are the "dials and knobs" of the device. In a distributed system it is
essential that you can distinguish between synchronous and asynchronous calls.
TANGO supports that.

A last OO concept we mention is the "state" of the class, i.e. technically is that
combined values of all data members. In control systems it is worth to be more
specific, to model devices as state machines with a set of predefined states and
transitions between those states. TANGO provides that: by default, TANGO
classes have a state attribute for this purpose and there is a set of predefined
states: ON, OFF, OPEN , CLOSE, MOVING, …

Pag
e

Let us conclude the brief introduction on the OO concepts used in TANGO here.
The TANGO architecture relies heavily on more advanced concepts and
techniques of the OO world, such as design patterns, but a discussion of this is
outside of the scope of this VM User Manual. Please refer to the following sources
for more information:

Abstract device pattern and Tango , A.Götz e.a.

Tango Control System Manual v 8.1: 8.1.2 The Device Pattern

Python powered tools: iTango, Sardana & Spock

Programmer friendliness is also greatly enhanced if you can interface dynamically
with a system through an interpreted, high-level programming language such as
Python.

Simple and powerful GUI building

Taurus Designer is a powerful TANGO client GUI designer. It is based on
QtDesigner, and extended with additional Taurus widgets and functionality to
serve for the purposes of TANGO development. With this tool, it is possible to
assemble and configure a TANGO client GUI, without the need to modify the code
itself.

In this section, we will construct such a simple client that will include most
common Taurus widgets for extracting and writing data from and to a device.

1. Open Taurus Designer by typing in a terminal window:

taurusdesigner

2. Create New Form

In the first window, you can select a type of the form that will be used. You
can choose from preassembled templates, widgets or any custom user
widgets. In the “templates/forms” section, select a “Widget” and create it.

3. Adding a new Label for Title

A standard Label is used for displaying a String. On the left, in the “Widget
Box” section, under “Display Widgets”, you will find a “Label” widget. Drag it
onto your form. Position it, double click it and set the string to display a
desired message/title. In the property editor on the right, you can modify it
furthermore. Change the “objectName” to a meaningful name, e.g. "title" and
modify the font, e.g. to font size 14.

Pag
e

http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/ds_prog/node9.html#SECTION00912000000000000000
http://www.tango-controls.org/device-servers/abstract-classes/Abstract_Device_Pattern.pdf
http://www.tango-controls.org/device-servers/abstract-classes/Abstract_Device_Pattern.pdf

4. Attribute Readout

Create a new Label for displaying the name of the attribute.

Create a new TaurusLabel for displaying the actual value of the attribute. You
will find it in the Widget Box under Taurus Display. Drag it onto the form. In
order to connect this field to an actual device, all you have to do is to specify
the device and the attribute. In the Property Editor, change the value of
“model” to “sim/motor/1/position”, where “sim/motor/1” defines a device and
“position” defines the attribute of the device.

5. State Indicator using TaurusLed

Create a new Label for displaying a name of the attribute (State).

Create a new TaurusLed. In the property Editor, change its value of “model” to
“sim/motor/1/state”, where again “sim/motor/1” defines the device.

Pag
e

6. Status Readout

Repeat the “Attribute Readout” part for an attribute “status”

7. Attribute Input

Here, you will create a spin box, used for writing a value to an attribute of the
device.

Create a new TaurusValueSpinBox (first of the Taurus Input widgets). In the
Property Editor, change its value of “model” to “sim/motor/1/position”, where
“sim/motor/1” defines the device and “position” defines the attribute.

8. Command Button

Here, you will create a button that will execute a command on the device.

Create a new TaurusCommandButton. In the property Editor, set the value of
“model” to “sim/motor/1”. This defines a device. Change the value of
“command” to a name of a command, for instance “StepDown”.

9. Generate Code

After saving the *.ui file in the designer, execute the command for generating
the python code.

cd /ProjectPath
taurusuic4 -x -o ui_name.py fileName.ui

10.Execute the code

python ui_name.py

11.Testing the client

If everything was properly set, your GUI client should look similar to:

Try changing the position. Execute commands using buttons. Validate if the
position, State and Status are properly read and displayed.

Pag
e

Pag
e

Putting it into Practice: Writing a Simple
Device Server

Let us dive a bit deeper and create an actual Tango Device Class and Device
Server in C++, using the Pogo code generator.

For this example we will be creating a simple temperature sensor. Start by
launching Pogo from the Desktop.

Enter the data as in the screenshot

1. Enter Class Name (MyTemperatureSensor)

2. Project Title (idem)

3. Class Description (idem for this demo. In real world applications please
describe the class behaviour here in detail)

4. Fill in Device Class Identification information (not filling them won't
allow you to OK the dialog)

5. Click on Ok.

Figure 9: Class Definition Window

Next we will add a Scalar Attribute that will represent our physical value we want
to measure: Temperature. All the default values (type double, read-only, etc.) are
ok for our example: click OK.

Now we can generate our C++ files. Click FileGenerate or ctrl-G.

 Set Output path to /home/guest/MyTemperatureSensor

 Select Linux Makefile, so we can easily build the project

Pag
e

Figure 10: Scalar Attribute creation and Generation Preference Window

Launch terminal

cd MyTemperatureSensor/

make

The code is compiled.

cd bin/

In the bin directory there is an executable MyTemperatureSensor executable. This is
a device sever. Run the device server with an instance, msti, in this case:

./MyTemperatureSensor mtsi

However, the device server has not been registered so you get an error message.

Pag
e

Launch Jive and go to the Server Wizard to register the device server
(MyTemperatureServer) and its instance (mtsi).

Click Next.

Pag
e

Now is the right time to start our server:

In the terminal windows, run the device server with an instance, msti, in this
case:

./MyTemperatureSensor mtsi

In Jive, click next on Start the server screen

Pag
e

To instantiate a device, we need to select its Class type. In this case there is just
one Class type in our Device Server (but remember there can be more). Select
MyTemperaturSensor and click Declare Device.

1. Enter device name: sim/temp/1

Note: for the purpose of this demo you could any string consisting of 3 fields,
separated by slashes. The aim of this naming system for big real-world systems is

Pag
e

to allow you to construct a logical domain/family/member hierarchy of Devices
that is fully independent of the physical Device Server Layout.

2. Click Next

3. Finish

4. Click Yes on "Would you like to reinitialize the server?"

MyTemperatureSensor now appears in list of device servers in Jive. Right click on
Temperature and select Monitor Device. Temperature is 0 as expected, we declared
an attribute but did not implement anything that would change its value

Figure 11: Device server MyTemperatureSensor has a device class sim/temp/1

We can now modify the code to introduce some changes to the temperature and
make the demo meaningful.

Before we change the code, stop the device server (Ctrl-z in the terminal where it
is running).

Pag
e

Note

For the purpose of this demo you can keep using make and
simple text editing: just navigate to the source files with Files
and edit them with right-clickOpen WithGNU Emacs.

If you prefer you can skip the section on Eclipse

Pag
e

Launch eclipse.

FileImportExisting Code as Makefile Project

Browse to MyTemperatureSensor, just select the top directory and OK.

Select Linux GCC as Toolchain and Finish

WindowOpen PerspectiveC/C++ and things should look like this:

Pag
e

1. In the MyTemperatureSensor.cpp file

a. Add initialization code in void
MyTemperatureSensor::init_device()

Existing Code New Code

// Initialize device // Initialize device
set_state(Tango::ON);
*attr_Temperature_read = 5;

b. Set the variable to increase in
void
MyTemperatureSensor::read_Temperature(Tango::Attribute
&attr)

Existing Code New Code

// Set the attribute value
attr.set_value(attr_Temperature_read);

*attr_Temperature_read += 1;

// Set the attribute value
attr.set_value(attr_Temperature_read);

2. ProjectBuild project or make in terminal

3. Restart device server

4. In Jive, monitor device to confirm that the temperature changes
(increases).

5. With AtkMoni you can visualize the linear temperature increase.

Pag
e

Figure 12: Temperature is seen to increase

Pag
e

Historical DataBase: HDB++

TANGO offers 2 Historical Databases for archiving device attributes in a control
system. The latest solution is called HDB++. It uses the events mechanism in
device servers to trigger so-called “archive” events. These are gathered by
archive event subscribers who listen for events and store them in the database.
Two databases backends are implemented – a MySQL and a Cassandra one. The
virtual machine has HDB++ installed for MySQL. It is pre-configured to read and
stored 5 attributes. Two devices servers are running in the background and two
graphical applications are provided via the launcher – hdb_config and hdb_viewer.

To start hdb_config click on the icon in the launcher. You will see a graphical
window similar to this:

The TANGO device tree on the left can be used to select attributes and configure
them for archiving. For events to work the device in question has to have polling
configured or be capable of pushing events.

Pag
e

To view archived data from HDB++ start the hdb_viewer tool from the launcher to
select which attributes to view and for which period:

Pag
e

Tips and Tricks

The Tango Box image is configure with persistent storage on, changes you make
are saved. When you shut down and restart, you continue where you left off,
useful when you use it for development purposes. I you intend to use the Tango
Box for demonstrations, you might want to start from the exact same image
every time again, to avoid the notorious "demo effect".

The way to do this is to add this line to the scsi0 section of the .vmx file:

scsi0:0.mode = "independent-nonpersistent"

Pag
e

	Introduction
	Overview of Tango (Box)

	Setting up your System
	Installing Virtual Box
	Download TANGO Box
	Running TANGO Box

	Whetting your Appetite A Quick Out-of-the Box Experience Experiencing a TANGO System running a Motor Simulator
	Using Jive
	Using iTango
	Using Taurus
	Using JDraw

	TANGO Box Tools Overview
	The Elegant TANGO Architecture: A Quick Overview
	TANGO is Programmer Friendly!
	It is Object Oriented
	Device Attributes, Properties, Commands and State
	Python powered tools: iTango, Sardana & Spock
	Simple and powerful GUI building

	Putting it into Practice: Writing a Simple Device Server
	Historical DataBase: HDB++
	Tips and Tricks

