| Name | Modified | Size | Downloads / Week |
|---|---|---|---|
| Parent folder | |||
| Expected_Results | 2016-04-19 | ||
| ReadMe.txt | 2016-04-12 | 1.3 kB | |
| chrTable_example.txt | 2016-04-12 | 445 Bytes | |
| gapfile_example.txt | 2016-04-12 | 43.1 kB | |
| regionTable_example.txt | 2016-04-12 | 62 Bytes | |
| Totals: 5 Items | 44.8 kB | 0 | |
# README
# instructions on how to run test for InvertR Strand-seq analysis package
# available at https://sourceforge.net/projects/strandseq-invertr/files/testData/
# Ashley D. Sanders
# 1. install and load 'InvertR' library (https://github.com/drashley/InvertR.git)
# 2. load test files:
chrTable <-read.table('./chrTable_example.txt')
gapfile <- read.table('./gapfile_example.txt')
roiList <-read.table('./regionTable_example.txt')
# 3. run examples A to C in directory containing BAM files (if directory contains BED files, change: type='bed')
# Example A. visualize chromosome 22 without any filtering:
runInvertR(chrTable[22,],
type='bam',
dataDirectory="./exampleA/",
bin=1000,
gapfile=0,
WCcutoff=0,
findROIs=F)
# Example B. analyze all 'ww' or 'cc' chromosomes, and predict ROIs
runInvertR(chrTable,
type='bam',
dataDirectory="./exampleB/",
bin=1000,
gapfile=gapfile)
# Example C. analyze an ROIfile with defined coordinates, and test a smaller bin
runInvertR(roiList,
type='bam',
dataDirectory="./exampleC/",
bin=50,
ROI=T,
padding=20000,
WCcutoff=0)