Name | Modified | Size | Downloads / Week |
---|---|---|---|
Parent folder | |||
Expected_Results | 2016-04-19 | ||
ReadMe.txt | 2016-04-12 | 1.3 kB | |
chrTable_example.txt | 2016-04-12 | 445 Bytes | |
gapfile_example.txt | 2016-04-12 | 43.1 kB | |
regionTable_example.txt | 2016-04-12 | 62 Bytes | |
Totals: 5 Items | 44.8 kB | 0 |
# README # instructions on how to run test for InvertR Strand-seq analysis package # available at https://sourceforge.net/projects/strandseq-invertr/files/testData/ # Ashley D. Sanders # 1. install and load 'InvertR' library (https://github.com/drashley/InvertR.git) # 2. load test files: chrTable <-read.table('./chrTable_example.txt') gapfile <- read.table('./gapfile_example.txt') roiList <-read.table('./regionTable_example.txt') # 3. run examples A to C in directory containing BAM files (if directory contains BED files, change: type='bed') # Example A. visualize chromosome 22 without any filtering: runInvertR(chrTable[22,], type='bam', dataDirectory="./exampleA/", bin=1000, gapfile=0, WCcutoff=0, findROIs=F) # Example B. analyze all 'ww' or 'cc' chromosomes, and predict ROIs runInvertR(chrTable, type='bam', dataDirectory="./exampleB/", bin=1000, gapfile=gapfile) # Example C. analyze an ROIfile with defined coordinates, and test a smaller bin runInvertR(roiList, type='bam', dataDirectory="./exampleC/", bin=50, ROI=T, padding=20000, WCcutoff=0)