StarGAN is an implementation of the Star Generative Adversarial Network, a model designed for multi-domain image-to-image translation using a single unified GAN architecture. Unlike earlier GAN approaches that required separate models for each domain pair, StarGAN enables flexible attribute transfer across multiple domains within one network, significantly improving efficiency and scalability. The repository includes full training and inference pipelines for tasks such as facial attribute manipulation and style transfer. It demonstrates adversarial training strategies, domain classification losses, and generator-discriminator coordination required for stable multi-domain translation. Researchers and practitioners often use the project as a reference when studying conditional GANs and advanced image synthesis techniques. Overall, the repository provides a clean and practical baseline for experimenting with multi-domain generative modeling in PyTorch.
Features
- Multi-domain image-to-image translation
- Unified StarGAN architecture
- Training and inference pipelines
- Facial attribute manipulation examples
- Adversarial and domain classification losses
- PyTorch-based implementation