
arataga
SObjectizer and RESTinio in action:

a real-world example

http://stiffstream.com

Foreword

2

http://stiffstream.com

What is 'arataga'

arataga is a fully working prototype of performant socks5+http/1.1 proxy server
targeted a case when thousands of entry points have to be opened.

3

http://stiffstream.com

A way to open source

arataga was in development in the summer of 2020 by stiffsteam for a customer
who wanted to replace its own old proxy server.

For some reason, the customer abandoned the project.

But almost all functionality we wanted to have was already implemented, so we
decided to open source arataga.

4

http://stiffstream.com

Why we open sourced aragata?

It's a shame to throw away a product that our hard work was put into.

Maybe the results of our work will be useful for somebody.

It's also a perfect showcase of how we write code using SObjectizer and
RESTinio.

5

http://stiffstream.com

Where arataga lives?

https://github.com/Stiffstream/arataga

6

https://github.com/Stiffstream/arataga
http://stiffstream.com

Requirements for arataga
and design decisions

7

http://stiffstream.com

Projects requirements

● thousands of entry-points (unique pairs of IP-address+TCP-port).
At least 8K entry-points should have been supported at the beginning;

● tens of thousands of users can work with the proxy simultaneously (40K
parallel connections is a normal workload);

● user connections/disconnections at the rate of 1,000+ new connections per
second;

● bandwidth had to be limited for client connections, including limits for a
particular domains;

● the configuration and lists of allowed users must be received
via a special HTTP entry point.

8

http://stiffstream.com

Multithreading or multiprocessing

Tens of thousands of connections are expected. They hardly be handled in a
single-thread application.

We didn't go in the multiprocess application direction: too many IPC was required
for controlling child processes and collecting the monitoring info.

We decided to build a multithreaded application with several worker threads that
serve connections.

9

http://stiffstream.com

Multithreading model

The old proxy server used by the customer adopts the thread-per-connection
model.

It doesn't work well when there are more than 30K connections.

So we chose something like the thread-per-core model:

● (nCPU-2) threads allocated for serving connections. We call them io_threads;
● there are also several service threads for working with configuration and so

on.

10

http://stiffstream.com

Admin HTTP-entry

One of the service threads is dedicated to handling the admin HTTP-entry point.

That HTTP-entry point is used for accepting a new config and/or new list of
allowed users and their parameters.

That HTTP-entry point is also used for retrieving the current stats from the proxy
server.

11

http://stiffstream.com

What's next?

The next part of this presentation tells about the usage of SObjectizer to simplify
multithreading.

Then we'll talk about the usages of RESTinio, some of that could be somewhat
surprising.

12

http://stiffstream.com

SObjectizer's related part

Actors instead of raw
multithreading

13

http://stiffstream.com

Raw multithreading is a pain

Dealing with raw multithreading in C++ is a straight way to various problems.

We prefer to use more high-level approaches like Actors or CSP.

That is why we developed and maintain SObjectizer that allows us to use Actors
and CSP when we need it.

14

http://stiffstream.com

Actors were an obvious choice for aragata

SObjectizer supports Actors and CSP models but in the case of arataga the choice
was clearly obvious.

We have to deal with a large number of independent objects with their own state
and logic.

Those objects required async interaction between each other.

That's an ideal use-case for actors.

15

http://stiffstream.com

Types of actors in arataga

There are a few types of actors (agents) in arataga:

● startup_manager;
● config_manager;
● user_list_manager;
● authentificator;
● dns_resolver;
● acl_handler.

16

http://stiffstream.com

startup_manager agent

startup_manager is used only at the start up.

It creates config_manager and user_list_manager agents.

Then launches RESTinio-based server for admin HTTP-entry.

17

http://stiffstream.com

config_manager agent

Tries to load local copy of the config at the start up.

Handles updates for the config from admin HTTP-entry.

Creates instances of asio_one_thread dispatches, creates and binds
authenificator and dns_resolver agents.

Creates and destroys acl_handler agents.

18

http://stiffstream.com

user_list_manager agent

Tries to load local copy of the user-list at the start up.

Handles updates for the user-list from admin HTTP-entry.

Distributes updated versions of user-list to make them available for authentificator
agents.

19

http://stiffstream.com

authentificator agent

Services authentification and authorization requests for acl_handler agents.

There is a separate authentificator agent for every io_thread.

20

http://stiffstream.com

dns_resolver agent

Services DNS lookup requests for acl_handler agents.

There is a separate dns_resolver* agent for every io_thread.

21

*there is no such agent as dns_resolver since v.0.4, now it's a coop of several agents. We'll see that later

http://stiffstream.com

acl_handler agent

Services a single entry-point:

● creates an incoming socket for specified IP-address and TCP-port;
● accepts new connections for that entry-point (stops accepting when there are

too many parallel connections);
● handles all accepted connections and all outgoing connection to target hosts.

22

http://stiffstream.com

Worker threads

There is no manual work with threads in aragata.

All worker threads required for aragata's agents are automatically created and
destroyed by SObjectizer. It's done by SObjectizer's dispatchers.

23

http://stiffstream.com

Dispatchers used in arataga

arataga uses two types of dispatchers:

● one_thread from SObjectizer's core. config_manager and user_list_manager
are bound to instances of that dispatcher type;

● asio_one_thread from so5extra companion project. authentificator,
dns_resolver and acl_handler agents are bound to instances of that
dispatcher type.

24

http://stiffstream.com

Agents and dispatchers: the picture

25

http://stiffstream.com

What is asio_one_thread dispatcher?

This dispatcher holds an instance of asio::io_context object.

The dispatcher starts a new thread and calls asio::io_context::run on it.

All events of agents bound to that dispatcher are scheduled via asio::post.

That allows agents to use Asio's calls (like async_accept, async_read,
async_write) directly in their event handlers.

This feature is critical for dns_resolver and acl_handler agents.

26

http://stiffstream.com

config_manager controls asio_one_thread disps

config_manager creates all necessary instances of asio_one_thread dispatchers
at the start up.

config_manager holds references to them and uses them to bind new instances of
acl_handler agents.

It can be seen as a table inside config_manager where a column describes one
io_thread.

27

http://stiffstream.com

config_manager controls asio_one_thread disps

28

http://stiffstream.com

config_manager controls acl_handler agents

config_manager creates and destroys acl_handler agents when the config
changes.

29

http://stiffstream.com

config_manager controls acl_handler agents

30

http://stiffstream.com

The role of acl_handler agent

Services a single entry-point:

● creates an incoming socket for specified IP-address and TCP-port;
● accepts new connections for that entry-point (stops accepting when there are

too many parallel connections);
● reads initial data from accepted connection, detects the client's protocol;
● handles incoming commands from client and establishes outgoing

connections to target hosts;
● transfers data between clients and target hosts.

31

http://stiffstream.com

We had plenty of choices:

1. An agent that serves a group of entry points with all related connections.
2. An agent that serves single entry point and all related connections.
3. An agent that serves single entry point and an agent that serves a pair of

incoming/outgoing connections.
4. An agent that serves single entry point, an agent for incoming connection, an

agent for outgoing connection.
5. An agent that serves a group of entry points, an agent for incoming

connection, an agent for outgoing connection.
6. ...

Why an agent for entry point?

32

http://stiffstream.com

...that serves also all related connections (incoming to that entry point, and
outgoing from that entry point).

The main reason: simplicity.

It's easy to delete entry point when it is removed from the config.

We decided to have an agent for entry point...

33

http://stiffstream.com

Too many agents in an application is not a good thing. It's hard to monitor and
debug program with 40K live agents inside.

Creation and deletion of agents is more expensive operation than creation and
deletion of more lightweight objects that we call connection_handler.

So in arataga an acl_handler agent owns many connection_handler objects.

An instance of connection_handler owns a pair of in/out connections.

connection_handler is created when acl_handler accepts new connection and is
destroyed when that connection is being closed.

No separate agents for in/out connections

34

http://stiffstream.com

acl_handler's picture

35

http://stiffstream.com

We have a pair of authentificator/dns_resolver agents on every io_thread.

It's an attempt to improve locality.

An acl_handler agent on an io_thread interacts only with authentificator and
dns_resolver agents from the same io_thread.

There is no need to exchange any data between io_threads to serve client
requests.

Why there are several authentificator/dns_resolvers?

36

http://stiffstream.com

config_manager handles updated configs and distributes new info to all interested
agents (acl_handlers, authentificators, dns_resolvers).

user_list_manager handles updated user-list and distributes new info to all
authentificator agents.

That distribution is performed by SObjectizer's many-producer/many-consumer
message box.

Distribution of updated configs/user-lists

37

http://stiffstream.com

config_managers sends updates to config_updates_mbox and those updates are
received by all subscribers of that mbox:

Config updates distribution scheme

38

http://stiffstream.com

retained_mbox is used for config updates

A special kind of message box is used as config_updates_mbox: retained_mbox
from the so5extra companion project.

That type of mbox holds a copy of the last message sent.

When a new subscriber arrives, that last copy is being automatically sent to it.

That way, new acl_handler agents automatically get the latest configuration.

39

http://stiffstream.com

dns_resolver is a coop of several agents

We rewrote interaction with DNS name servers in v.0.4 and since then there are
several agents that play the role of dns_resolver.

All other agents in arataga didn't see that change because all interactions are
done via separate interface mbox.

40

http://stiffstream.com

The old scheme of dns_resolver's internals

41

http://stiffstream.com

acl_handlers know only interface mbox

All acl_handler-agents know only the interface mbox of dns_resolver part.
No one knows what's behind that mbox.

That allowed us to replace a_dns_resolver with a couple of new agents:

● a_collector that collects incoming resolve requests, queues them, holds the
results cache;

● a_nameserver_interactor that performs actual interaction with name servers
using UDP protocol.

No changes were made for acl_handler during that refactoring.

42

http://stiffstream.com

Simplified new scheme of dns_resolver's internals

43

http://stiffstream.com

There are two a_collector actually...

Actually, every dns_resolver part holds two a_collector agents.

One handles requests for IPv4 addresses, another for IPv6.

But they are subscribed to a single source of resolve_request_t messages.

The separation of incoming message flows is done via SObjectizer's delivery
filters.

44

http://stiffstream.com

Actual new scheme of dns_resolver's internals

45

http://stiffstream.com

RESTinio's related part

How RESTinio is used in
arataga?

46

http://stiffstream.com

RESTinio in arataga: three use cases

We'll see three use cases for RESTinio in arataga.

One is obvious.

The second is not so.

The last is very surprised even for us.

47

http://stiffstream.com

An obvious use case: admin HTTP-entry

Admin HTTP-entry in arataga is implemented via RESTinio.

This entry-point accepts and handles GET and POST requests.

Every request should have a special Arataga-Admin-Token header field.

48

http://stiffstream.com

Admin HTTP-entry: launching

An instance of RESTinio server is launched by using restinio::run_async...

49

http://stiffstream.com

Admin HTTP-entry: launching
struct server_traits_t : public restinio::default_traits_t
{
 // There are only three handlers in the chain:
 // - checks for admin-token;
 // - checks for content-type for POST-requests;
 // - actual handling.
 using request_handler_t = restinio::sync_chain::fixed_size_chain_t< 3>;
};

50

http://stiffstream.com

Admin HTTP-entry: launching
[[nodiscard]] running_entry_handle_t start_entry(
 asio::ip::address entry_ip, std::uint16_t entry_port,
 std::string admin_token, requests_mailbox_t & mailbox)
{
 auto processor = std::make_shared< impl::request_processor_t >(mailbox);

 auto server = restinio::run_async(
 restinio::own_io_context(),
 restinio::server_settings_t< impl::server_traits_t >{}
 .address(entry_ip)
 .port(entry_port)
 .request_handler(
 impl::make_admin_token_checker(std::move(admin_token)),
 impl::make_content_type_checker(),
 [handler = std::move(processor)](auto req) {
 return handler->on_request(std::move(req));
 }),
 1); // Just one worker thread.

 return std::make_unique< impl::actual_running_entry_instance_t >(std::move(server));
}

51

http://stiffstream.com

Admin HTTP-entry: interaction with agents

RESTinio server doesn't know about agents.

Agents don't know about RESTinio.

Interaction is performed via two special interfaces...

52

http://stiffstream.com

Admin HTTP-entry: interaction with agents
class replier_t {
public:
 virtual ~replier_t();

 virtual void reply(status_t status, std::string body) = 0;
};

53

http://stiffstream.com

Admin HTTP-entry: interaction with agents
class requests_mailbox_t {
public:
 virtual ~requests_mailbox_t();

 virtual void new_config(replier_shptr_t replier, std::string_view content) = 0;

 virtual void
 get_acl_list(replier_shptr_t replier) = 0;

 virtual void new_user_list(replier_shptr_t replier, std::string_view content) = 0;

 virtual void get_current_stats(replier_shptr_t replier) = 0;

 ...
};

54

http://stiffstream.com

Admin HTTP-entry: interaction with agents

RESTinio's part has an actual implementation of replier_t interface.

SObjectizer's part has an actual implementation of request_mailbox_t interface.

55

http://stiffstream.com

Admin HTTP-entry: interaction with agents

When HTTP-entry accepts a new request it creates an instance of replier_t and
calls appropriate request_mailbox_t's method.

For example, when a new config is received the new_config() method is called.

The actual implementation of new_config() send a message to the
config_processor agent.

The config_processor handles new config and calls replier_t::reply() method.

56

http://stiffstream.com

Admin HTTP-entry: interaction with agents

57

http://stiffstream.com

Not obvious, but expected use case: HTTP-headers

We didn't plan to use RESTinio for serving incoming HTTP connections.

It's because the current version of RESTinio loads the whole request into the
memory and only then allows to handle the request.

That approach can't be used in proxy where a lot of large incoming requests have
to be handled without affecting the performance and resource usage.

But we hoped that some parts of RESTinio could simplify our work...

58

http://stiffstream.com

Not obvious, but expected use case: HTTP-headers

RESTinio has tools for working with HTTP header fields.

Those tools were reused in arataga.

59

http://stiffstream.com

Not obvious, but expected use case: HTTP-headers

RESTinio's http_header_fields_t container is used for holding headers:

struct request_info_t
{
 //! HTTP-method of the request.
 /*!
 * It is stored here to be easily accessible.
 */
 http_method m_method;

 //! The value of request-target from the start-line.
 std::string m_request_target;

 //! Extracted HTTP header fields from the incoming request.
 restinio::http_header_fields_t m_headers;

 ...

60

http://stiffstream.com

Not obvious, but expected use case: HTTP-headers

Not only for holding headers, but also for handling them:

// If there are more than one Host header fields then the request
// should be rejected. So count the fields.
std::optional< std::string_view > opt_host;
std::size_t host_occurrences{ 0u };

m_request_info. m_headers.for_each_value_of(
 restinio::http_field_t::host,
 [&](std::string_view value)
 {
 ++host_occurrences;
 if(1u == host_occurrences) { opt_host = value; }

 return restinio::http_header_fields_t::continue_enumeration();
 });

61

http://stiffstream.com

Not obvious, but expected use case: HTTP-headers

RESTinio's http_field_parsers are used for parsing headers:

#include <restinio/helpers/http_field_parsers/authorization.hpp>
#include <restinio/helpers/http_field_parsers/basic_auth.hpp>
...
using namespace restinio::http_field_parsers;
const auto auth_value_result = authorization_value_t::try_parse(*opt_proxy_auth_value);
if(!auth_value_result)
 return username_password_extraction_failure_t{
 make_error_description(auth_value_result.error(), *opt_proxy_auth_value)
 };
...
auto basic_auth_result = basic_auth::try_extract_params(auth_value);
if(!basic_auth_result)
 return username_password_extraction_failure_t{
 fmt::format("basic-auth param extraction failed: {}" ,
 static_cast<int>(basic_auth_result.error()))
 };

62

http://stiffstream.com

Totally unexpected use case: config parsing

We have to parse a couple of config files with custom syntax.

That syntax wasn't too complex in general, but the standard C++ library totally
lacks any useful tools for such a task :(

Moreover, we wanted to make the syntax more user-friendly. For example, we
wanted to have an ability to write like that:

acl.io.chunk_size 16kib # Instead of 16384

timeout.authentification 12s # Instead of 12000
dns_cache_cleanup_period 6min # Instead of 360

63

http://stiffstream.com

Totally unexpected use case: config parsing

We solved that task by using RESTinio's easy_parser that is used in RESTinio for
parsing HTTP header fields.

As an example we'll show how values like 1min, or 25s, or 125ms are parsed...

64

http://stiffstream.com

An example of RESTinio-based parser (1)
Factory for parsers of time-out values:

/*!
 * @brief A producer for easy_parser that extracts time-out values
 * with possible suffixes (ms, s, min).
 */
[[nodiscard]] static auto timeout_value_p()
{
 struct tmp_value_t
 {
 std::int_least64_t m_count{ 0 };
 int m_multiplier{ 1000 };
 };

 using namespace restinio::http_field_parsers;
 using std::chrono::milliseconds;

65

http://stiffstream.com

An example of RESTinio-based parser (2)
 return produce< milliseconds >(
 produce< tmp_value_t >(
 non_negative_decimal_number_p< std:: int_least64_t >() >> &tmp_value_t::m_count,
 maybe(
 produce< int >(
 alternatives(
 exact_p("min") >> just_result(60'000),
 exact_p("s") >> just_result(1'000),
 exact_p("ms") >> just_result(1)
)
) >> &tmp_value_t::m_multiplier
)
)
 >> convert([](const auto tmp) { return milliseconds{tmp.m_count} * tmp.m_multiplier; })
 >> as_result()
);
}

66

http://stiffstream.com

An example of RESTinio-based parser (3)
A usage of that parser:

//! Handler for `dns_cache_cleanup_period` command.
class dns_cache_cleanup_period_handler_t : public command_handler_t
{
public:
 command_handling_result_t try_handle(
 std::string_view content, config_t & current_cfg) const override
 {
 return perform_parsing(content, parsers::timeout_value_p(),
 [&](std::chrono::milliseconds v) -> command_handling_result_t {
 if(std::chrono::milliseconds::zero() == v)
 return failure_t{ "dns_cache_cleanup_period can't be 0" };

 current_cfg.m_dns_cache_cleanup_period = v;
 return success_t{};
 });
 }
};

67

http://stiffstream.com

Epilog

68

http://stiffstream.com

Unfortunately, arataga wasn't stress-tested enough

Because the customer lost interest in the project, the arataga wasn't stress-tested
under the huge loads.

Only a few stress tests were performed.

In config and load dependency, arataga used from 1.5 to 4 times less CPU
consumption than the customer's old proxy server under the same workload.

69

http://stiffstream.com

The current status

The active development of arataga was suspended in 2020.

We ourselves consider arataga to be an excellent testing ground for the
approbation of new versions of SObjectizer and RESTinio in real-life conditions.

So we make some changes to arataga from time to time when we have some new
idea.

We also fix issues when someone reports them. If you find a problem in arataga
feel free to open an issue on GitHub.

70

http://stiffstream.com

Our own impressions: RESTinio

71

The use of RESTinio in arataga gave us some ideas for new RESTinio's features.

One of them, chain of synchronous handlers, was implemented and available
since RESTinio-0.6.13.

Others still wait their time...

http://stiffstream.com

Our own impressions: SObjectizer

Usual routine, nothing exciting, no challenges.

We took SObjectizer, wrote several agents, and that's all.

SObjectizer just works. There weren't any SObjectizer's or multithreading-related
issues.

72

http://stiffstream.com

References

https://github.com/Stiffstream/arataga

https://github.com/Stiffstream/sobjectizer

https://github.com/Stiffstream/so5extra

https://github.com/Stiffstream/restinio

73

https://github.com/Stiffstream/arataga
https://github.com/Stiffstream/sobjectizer
https://github.com/Stiffstream/so5extra
https://github.com/Stiffstream/restinio
http://stiffstream.com

That's all

Thanks!

74

http://stiffstream.com

