
What is SObjectizer-5.7?
(at version 5.7.0)

SObjectizer Team, Jan 2020

SObjectizer is a framework for building robust multithreaded
applications.

It is based on async message exchange and uses a mixture of
high-level abstractions:

● Actor-Model
● Publish-Subscribe
● Communicating Sequential Processes

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer’s main ideas and principles were formulated in the
middle of 1990s, during the development of SCADA Objectizer
project in Development Bureau of System Programming in
Homyel, Belarus (1996-2000).

SCADA Objectizer’s ideas were reused in the new project
SObjectizer-4 in 2002.

Evolution of SObjectizer-4 was stopped in 2010 and the
development of SObjectizer-5 started.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer was an in-house project of Intervale* for the long
time.

Since 2013 SObjectizer is an independent project which a
totally separated from Intervale.

Since 2016 the SObjectizer's development and support is
performed by stiffstream**.

*www.intervale.ru
**stiffstream.com SObjectizer Team, Jan 2020

http://www.intervale.ru
https://stiffstream.com
https://github.com/Stiffstream/sobjectizer

SObjectizer was used for:

● SMS/USSD traffic service;
● financial transaction handling;
● software parameters monitoring;
● automatic control of the theatre's scenery*;
● machine learning;
● prototyping of distributed data-acquisition software;
● components of DMP in an advertising platform;
● components of an online game.

*https://habr.com/en/post/452464/ SObjectizer Team, Jan 2020

https://habr.com/en/post/452464/
https://github.com/Stiffstream/sobjectizer

SObjectizer can be used for the development of a large,
distributed and highly loaded software systems.

SObjectizer can also be used for small utilities and
quick-and-dirty prototypes.

The whole application can be built upon SObjectizer.

Or SObjectizer can be used only for a small part of an
application developed on the top of Qt, wxWidgets, ACE, Boost,
etc.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

What distinguishes SObjectizer?

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Maturity

SObjectizer is based on ideas that have been put forward in
1995-2000.

And SObjectizer itself is being developed since 2002.

SObjectizer-5 is continuously evolved since 2010.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Stability

From the very beginning SObjectizer was used for
business-critical applications, and some of them are still being
used in production.

Breaking changes in SObjectizer are rare and we approach to
them very carefully.

For example, branch 5.5 respects compatibility for more that
four years.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Cross-platform

SObjectizer runs on Windows, Linux, FreeBSD, macOS and
Android.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Easy-to-use

SObjectizer provides easy to understand and easy to use API
with a lot of examples in the SObjectizer's distributive and a
plenty of information in the project's Wiki*.

https://github.com/Stiffstream/sobjectizer/wiki SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer/wiki
https://github.com/Stiffstream/sobjectizer

Free

SObjectizer is distributed under BSD-3-CLAUSE license, so it
can be used in development of proprietary commercial software
for free.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

It's not dead!

SObjectizer is one of a few live and evolving OpenSource actor
frameworks for C++.

There are more that 30 releases on SObjectizer-5 since it was
open-sourced in May 2013.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

It evolves

SObjectizer-5.7 has much more features than the first public
release of SObjectizer-5 had in 2013.

During the evolution, SObjectizer incorporated several features
that can be called game-changers...

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Some of new features since 2013:

● agents as hierarchical state machines;
● mutability for messages;
● message chains;
● environment infrastructures;
● enveloped messages;
● dead-letter handlers;
● message-tracing;
● stop-guards;
● run-time monitoring;
● unit-testing of agents;
● ...

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Let's dig into some details!

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Using SObjectizer-5.7 a programmer must define
messages/signals and implement agents for processing them.

Agents are created by the programmer and are bound to
dispatchers. Dispatchers are responsible for message
dispatching and providing of working thread on which agents
handle messages.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

A programmer can create as many agents as needed.

Agent is a lightweight entity.

There could be thousands, millions and hundreds of millions of
agents.

Number of agents is limited only by amount of RAM and the
common sense of a programmer.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

A traditional "Hello, World" example. This is the main agent:

#include <so_5/all.hpp>

class hello_actor final : public so_5::agent_t {
public:

using so_5::agent_t::agent_t;

void so_evt_start() override {
std::cout << "Hello, World!" << std::endl;
// Finish work of example.
so_deregister_agent_coop_normally();

}
};

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

And this is the main() function:

int main() {
// Launch SObjectizer.
so_5::launch([](so_5::environment_t & env) {

// Add a hello_actor instance in a new cooperation.
env.register_agent_as_coop(env.make_agent<hello_actor>());

});

return 0;
}

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Let's see an example of timers and Publish/Subscribe.

There will be a producer agent that will distribute new values on a
periodic basis.

And there will be a couple of consumers on that data.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Define a message with new data:

#include <so_5/all.hpp>

using namespace std::literals;

// This message will be published to a multi-consumer message box on a periodic basis.
struct acquired_value {

std::chrono::steady_clock::time_point acquired_at_;
int value_;

};

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Agent-producer (fields and the constructor):

class producer final : public so_5::agent_t {
const so_5::mbox_t board_; // The destination for acquired_value.
so_5::timer_id_t timer_;
int counter_{};

// This signal will be sent by the timer.
struct acquisition_time final : public so_5::signal_t {};

public:
producer(context_t ctx, so_5::mbox_t board)

: so_5::agent_t{std::move(ctx)}, board_{std::move(board)}
{}

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Agent-producer (the main methods):

void so_define_agent() override {
// A subscription to periodic signal.
so_subscribe_self().event([this](mhood_t<acquisition_time>) {

// Publish the next value for all consumers.
so_5::send<acquired_value>(

board_, std::chrono::steady_clock::now(), ++counter_);
});

}

void so_evt_start() override {
// Agent will periodically recive acquisition_time signal
// without initial delay and with period of 750ms.
timer_ = so_5::send_periodic<acquisition_time>(*this, 0ms, 750ms);

}
};

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Agent-consumer:

class consumer final : public so_5::agent_t {
const so_5::mbox_t board_;
const std::string name_;

void on_value(mhood_t<acquired_value> cmd) {
std::cout << name_ << ": " << cmd->value_ << std::endl;

}

public:
consumer(context_t ctx, so_5::mbox_t board, std::string name)

: so_5::agent_t{std::move(ctx)}, board_{std::move(board)}, name_{std::move(name)}
{}

void so_define_agent() override { so_subscribe(board_).event(&consumer::on_value); }
};

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

The main() function:

int main() {
so_5::launch([](so_5::environment_t & env) {

auto board = env.create_mbox();
env.introduce_coop([board](so_5::coop_t & coop) {

coop.make_agent<producer>(board);
coop.make_agent<consumer>(board, "first"s);
coop.make_agent<consumer>(board, "second"s);

});

std::this_thread::sleep_for(4s);
env.stop();

});
return 0;

}

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

All agents in the example above works on the same default
dispatcher.

Let's bind them to different dispatchers...

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

so_5::launch([](so_5::environment_t & env) {
auto board = env.create_mbox();
env.introduce_coop([&](so_5::coop_t & coop) {

// A separate dispatcher for producer.
coop.make_agent_with_binder<producer>(

so_5::disp::one_thread::make_dispatcher(env).binder(), board);

// And a separate dispatcher for consumers.
auto disp = so_5::disp::active_obj::make_dispatcher(env);
coop.make_agent_with_binder<consumer>(disp.binder(), board, "first"s);
coop.make_agent_with_binder<consumer>(disp.binder(), board, "second"s);

});
...

});

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer has several ready-to-use dispatchers:
● one_thread. All agents work on a single working thread;
● active_obj. Every agent works on a single dedicated working thread;
● active_group. A single dedicated working thread is allocated for a group of

agents;
● thread_pool. A working thread is selected from thread pool. Agents can be moved

from one working thread to another. But an agent can’t work on two threads at the
same time;

● adv_thread_pool. A working thread is selected from thread pool. Agents can be
moved from one working thread to another. Moreover an agent can work on
several threads at the same time (if the agent’s event handlers are marked as
thread safe);

● prio_one_thread (strictly_ordered and quoted_round_robin). One working
thread and dispatching with respect to agent’s priorities;

● prio_dedicated_threads::one_per_prio. One working thread per a priority.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

A programmer can create any number of dispatchers needed. This
allows to bind agents to different context in such a way that the impact
of one agent on another will be minimal. For example:

● one one_thread dispatcher for AMQP-client agent;
● one thread_pool dispatcher for handling requests from AMQP-queues;
● one active_obj dispatcher for DBMS-related agents;
● yet another active_obj dispatcher for agents whose work with HSMs

connected to the computer;
● and yet another thread_pool dispatcher for agents for managing all the

stuff described above.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer even allows writing an application without actors...

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

You can write a multithreaded application using only plain
std::thread and SObjectizer's mchains.

mchain in SObjectizer is an analog of CSP-channel.

Let's see a ping-pong between worker threads via mchains...

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Ping-pong on plain threads and mchains (1)

#include <so_5/all.hpp>

struct ping {
int counter_;

};

struct pong {
int counter_;

};

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Ping-pong on plain threads and mchains (2)

void pinger_proc(so_5::mchain_t self_ch, so_5::mchain_t ping_ch) {
so_5::send<ping>(ping_ch, 1000); // The initial "ping".

// Read all message until channel will be closed.
so_5::receive(so_5::from(self_ch).handle_all(),

[&](so_5::mhood_t<pong> cmd) {
if(cmd->counter_ > 0)

so_5::send<ping>(ping_ch, cmd->counter_ - 1);
else {

// Channels have to be closed to break `receive` calls.
so_5::close_drop_content(self_ch);
so_5::close_drop_content(ping_ch);

}
});

}

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Ping-pong on plain threads and mchains (3)

void ponger_proc(so_5::mchain_t self_ch, so_5::mchain_t pong_ch) {
int pings_received{};

// Read all message until channel will be closed.
so_5::receive(so_5::from(self_ch).handle_all(),

[&](so_5::mhood_t<ping> cmd) {
++pings_received;
so_5::send<pong>(pong_ch, cmd->counter_);

});

std::cout << "pings received: " << pings_received << std::endl;
}

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Ping-pong on plain threads and mchains (4)

int main() {
so_5::wrapped_env_t sobj;

auto pinger_ch = so_5::create_mchain(sobj);
 auto ponger_ch = so_5::create_mchain(sobj);

std::thread pinger{pinger_proc, pinger_ch, ponger_ch};
std::thread ponger{ponger_proc, ponger_ch, pinger_ch};

ponger.join();
pinger.join();

return 0;
}

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer-5.7 provides a select() function that can be
compared with Go's select statement.

SObjectizer's select() allows doing non-blocking send to a
mchain with waiting of an incoming message from another
mchain(s).

Let's see how famous Go's example* with the calculation of
Fibonacci numbers in different goroutines can look like in
SObjectizer.

https://tour.golang.org/concurrency/5 SObjectizer Team, Jan 2020

https://tour.golang.org/concurrency/5
https://github.com/Stiffstream/sobjectizer

Calculation of Fibonacci numbers in different threads (1)

#include <so_5/all.hpp>

#include <chrono>

using namespace std;
using namespace std::chrono_literals;
using namespace so_5;

struct quit {};

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Calculation of Fibonacci numbers in different threads (2)

void fibonacci(mchain_t values_ch, mchain_t quit_ch) {
 int x = 0, y = 1;
 mchain_select_result_t r;
 do {
 r = select(from_all().handle_n(1),
 send_case(values_ch, message_holder_t<int>::make(x),
 [&x, &y] {
 auto old_x = x;
 x = y; y = old_x + y;
 }),
 receive_case(quit_ch, [](quit){}));
 } while(r.was_sent() && !r.was_handled()); // Continue while nothing received.
}

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Calculation of Fibonacci numbers in different threads (3)

int main() {
 wrapped_env_t sobj;

 thread fibonacci_thr;
 auto thr_joiner = auto_join(fibonacci_thr); // Automatically join thread at exit.

 auto values_ch = create_mchain(sobj, 1s, 1, // Limit the capacity of Fibonacci numbers chain.
 mchain_props::memory_usage_t::preallocated, mchain_props::overflow_reaction_t::abort_app);
 auto quit_ch = create_mchain(sobj);

 fibonacci_thr = thread{ fibonacci, values_ch, quit_ch }; // A separate thread for the calculation.

 receive(from(values_ch).handle_n(10), [](int v) { cout << v << endl; });

 send< quit >(quit_ch);
}

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer is not a silver bullet

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer supports several concurrency models.

SObjectizer makes the development of complex multithreaded
applications easier.

It's proved by 18 years of usage "in production".

But SObjectizer doesn't solve all the problems...

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer is responsible for:

● in-process message dispatching;
● providing working thread for message processing;
● SObjectizer Run-Time’s parameters tuning;
● collecting of run-time stats (if enabled);
● message delivery process tracing (if enabled).

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

And SObjectizer-5 doesn't support development of distributed
application just "out of box".

Additional libraries and tools should be used for that.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Some more info about
SObjectizer-5.7.0

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

SObjectizer-5.7 is developed using C++17.

Supported compilers and platforms:
● Visual Studio 2019, GCC 7.1-9.2, clang 6.0-9.0
● Windows, Linux, FreeBSD and MacOS.

Support of other platforms is possible in the case when
SObjectizer’s developers will have an access to those platforms.

SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer

Version 5.7.0 is ~31 KLOC of SObjectizer core.

Plus ~41 KLOC of tests.

Plus ~8 KLOC of samples.

Plus SObjectizer’s core documentation*.
Plus articles and presentations** (some of them in Russian).

*https://github.com/Stiffstream/sobjectizer/wiki
**http://sourceforge.net/p/sobjectizer/wiki/Articles/ SObjectizer Team, Jan 2020

https://github.com/Stiffstream/sobjectizer/wiki
http://sourceforge.net/p/sobjectizer/wiki/Articles/
https://github.com/Stiffstream/sobjectizer

Useful references:

Project’s home: https://github.com/Stiffstream/sobjectizer

Documentation: https://github.com/Stiffstream/sobjectizer/wiki

Google-group: https://groups.google.com/forum/#!forum/sobjectizer

Support: https://stiffstream.com

https://github.com/Stiffstream/sobjectizer
https://github.com/Stiffstream/sobjectizer/wiki
https://groups.google.com/forum/#!forum/sobjectizer
https://stiffstream.com

