
FH-Prof. Dr. Jozef Aerts, Marie-Christin Eisner, Julie Sajan Pattery
UNIVERSITY OF APPLIED SCIENCES FH JOANNEUM | GRAZ, AUSTRIA

Tutorial:
Smart Dataset-XML

Viewer
VERSION 2017-06-20

Page 1 of 72

Table of Contents

List of Abbreviations .. 2

1. Introduction ... 3

2. Starting Up the Viewer .. 3

3. Adding the define.xml File ... 5

4. Adding Dataset-XML Files .. 7

5. Displaying the Datasets ... 9

6. Basic Features for Working with the Tables .. 14

7. Basic Sorting within the Table ... 16

8. Multiple Column Sorting within the Table .. 17

9. Removing the Sorting .. 19

10. Exporting Data Tables as Text Files ... 20

11. Simple Validation of the Datasets ... 22

12. Basic Validation That Is Always Done .. 26

13. Filtering Options .. 26

14. Filtering Subjects ... 29

15. Sorting and Filtering on Topic Variable ... 34

16. Advanced Filtering ... 39

17. Working with Supplemental Qualifiers ... 46

18. Bringing Non-Standard Variables Back to the Parent Dataset .. 49

19. Working with Comments (CO) Dataset ... 53

20. Working with Related Records (RELREC Dataset) ... 56

21. Jumping to Corresponding Data in the DM Dataset ... 58

22. Showing Date of First and Last Study Treatment in the DM Dataset.. 59

23. On-the-Fly Calculation of Derived Variable Values ... 61

24. Additional Features: Interrupting the Loading Process ... 64

25. Setting the Font Size for the Tables... 65

26. Validation: Checking the Study OID versus the Study OID Given in the define.xml File 65

27. Validation: Using OpenCDISC within the Smart Dataset-XML Viewer .. 67

28. Internationalization ... 67

29. Display ADaM Dates as ISO-8601 in the Smart Dataset-XML Viewer ... 68

Appendix 1: Starting the Smart Dataset-XML Viewer from other programs and systems 69

Appendix 2: Perspectives for the Future ... 71

References ... 72

Page 2 of 72

List of Abbreviations

ADaM Analysis Data Model
ADSL Subject-Level Analysis Dataset
--CAT Category
CDA Clinical Document Architecture
CDISC Clinical Data Interchange Standards Consortium
CM Concomitant Medications
CO Comments
--DTC Date/Time of Collection
--DY Study Day Variable
FDA Food and Drug Administration
HL7 Health Level 7
LB Laboratory
LOINC Logical Observation Identifiers Names and Codes
RELREC Related Record
RFENDTC Subject Reference End Date/Time
SDTM Study Data Tabulation Model
SEND Standard for Exchange of Non-clinical Data
SEQ Sequence Number
SNOMED Systemized Nomenclature of Medicine
--STNRHI Normal Range Upper-Limit in Standard Units
--STRESN Numeric Result/Finding in Standard Units
--TESTCD Test Code
XML Extensible Markup Language

Page 3 of 72

1. Introduction

The "Smart Dataset-XML Viewer" is a Java-based viewer for inspecting SDTM, SEND or ADaM

submissions in the new Dataset -XML format.

It allows the following:

 Filtering of data

 Basic validation of the datasets (against the metadata in the corresponding define.xml file)

 Sorting by multiple variables

 Creation of subsets of data

 Find parent records of supplemental qualifier records and of comment records quickly

 Find related records as listed in the RELREC dataset

The "Smart Dataset-XML Viewer" is continuously developed and new features are added

regularly, so when working with the viewer, you might encounter features that are not

described here yet.

For further information and regular updates, please visit:

http://cdiscguru.blogspot.com/2016/08/why-lobxfl-should-not-be-in-sdtm.html [1]

To download the “Smart Dataset-XML Viewer”, please visit:

https://sourceforge.net/projects/smart-sds-xml-viewer/files/ [2]

2. Starting Up the Viewer

For installation instructions, please refer to the separate "Installation manual". To start the

viewer, navigate to the folder where you installed the software. You will find the following

files:

http://cdiscguru.blogspot.com/2016/08/why-lobxfl-should-not-be-in-sdtm.html
https://sourceforge.net/projects/smart-sds-xml-viewer/files/

Page 4 of 72

Before starting the “Smart Dataset-XML Viewer” for the first time, double click the file “check-

java.bat” in order to find out if you have installed the needed java version.

If you see java version “1.7” or above you can continue with the next instructions, otherwise

please install the latest version of the Java Runtime Environment (JRE), which you can find on

http://www.oracle.com/. [3]

http://www.oracle.com/

Page 5 of 72

Double click the file "Smart_Dataset-XML_Viewer.bat". Then the following window is

displayed:

At the top left, you will find a drop-down selector for selecting which standard (SDTM, SEND

or ADaM) you would like to work with. This is necessary as the validation rules for SDTM, SEND

and ADaM are different.

3. Adding the define.xml File

The second row allows you to select the "define.xml" file containing the metadata for your

submission. Using the "Browse" button, you can navigate through the available folders and

files and pick the "define.xml" file that you need. For example:

Page 6 of 72

The file selector only displays the XML files in the chosen folder. If you would also like to see

all other available files in a folder, use the "Files of Type" selector and select "All Files". Then

select the file that is the define.xml file, and click "Open".

The text field for the "define.xml" is then filled:

The next important step is to select the correct version of the define.xml standard that you

are working with. If you select the wrong version, the viewer will later (after clicking the "Start"

button) give an error message. You can then still change the version, and retry.

Please remark that you always need to have a "define.xml" file. As long as no "define.xml" file

has been selected, the "Start" button will be disabled, and you cannot start loading data files.

In our case, the define.xml file is still a version 1.0 file, so we need to select the radio button

"1.0".

Page 7 of 72

4. Adding Dataset-XML Files

Once a define.xml file and the define.xml version have been selected, you can start adding

data files in Dataset-XML files for which the define.xml file applies. This can be done using the

"Add" button in the main window:

By default, when clicking the "Add" button, you will get a file selector that displays the XML

files that are in the same directory. For example:

You can now select one or more Dataset-XML files (.xml extension). The files can also be zipped

Dataset-XML file (.zip file extension). Remark that you should not add the "define.xml" file

here again.

To select multiple files, hold the "CTRL" button and pick several files that you want to load.

For example, we here select the "AE.xml", the "CM.xml" and the "DM.xml" and "LB.xml" file:

Page 8 of 72

It usually does not make sense to try to select all files of the submission, as this will lead to

millions of data points. Later we will learn how to make selections of subjects, and then load

additional files for these selected subjects only. We do however advise to always at least select

the dataset for the "DM" (ADSL in case of the ADaM standard) domain, as several of the

validation checks need the information from this dataset. We will very soon also learn how to

filter on --TESTCD or --CAT values, so that we can only load those LB (laboratory) records that

e.g. are about albumin tests or are about urine analysis.

Now click the "Open" button to finalize the selection of the datasets that you want to load.

This leads to:

You can now always use the "Add" button to add additional datasets to the list, use the

"Remove" button to remove selected ones, or to clear the list using the "Clear" button.

We will not use the "Options" button for now but we will come back to its usage soon.

Page 9 of 72

Once everything that is necessary is provided, we can start loading!

5. Displaying the Datasets

At the bottom of the screen, just above the "Start" button, you can find two "progress bars".

The first one allows you to follow the progress of the dataset loading, the second one the

progress of validation of the data files1.

Now click the "Start" button to start generating the tables for the selected datasets.

Remark that we have an LB.xml file for which there is controlled terminology for LBTESTCD,

and that this file has results for all kinds and types of laboratory tests, often leading to

hundreds of thousands or more records. Of course, it does not make sense to load all of these,

and apply filtering afterwards. It is much better to apply a filter on LBTESTCD at the time of

the loading itself.

The system will now look into the loaded define.xml file, and in our case, find out that there

is a code list attached for IETESTCD and for LBTESTCD. The following dialogue is then

presented:

1 Remark that some basic validation is always performed, even when all validation options using
the "Options" button have been switched off.

Page 10 of 72

This dialogue shows us all filtering options based on either --TESTCD or --CAT. Those tabs that

have a white tab label (like "TI" in this case) are about data sets that will currently not be

loaded, so you do not need to apply any filtering for now. Those that have a red label (like

"LB" in our case) are about large files for which it is recommended to apply a filter. Later we

will learn how to set the criteria about what a "large" file is and how to change it (default is

20MB). As LB is a very large data set, we want to apply a filter on LBTESTCD, so we click the

"LB" tab:

Page 11 of 72

As the file is pretty large, the system suggests that it may be useful to apply a filter during

loading. If we do not want to apply any filtering at all on LBTESTCD or on LBCAT, we leave the

radiobutton "No filter on LBTESTCD / LBCAT" checked. In case we only want to see the records

for specific tests (recommended) we select the radiobutton "Filter on LBTESTCD" which then

allows us to select one or more tests (use the CTRL-key to select multiple entries). For

example:

Here, we have selected to only load the records for the lab tests "GLUC" (glucose), "RBC" (red

blood count) and "WBC" (white blood count).

If our define.xml file contains controlled terminology for more tests (as defined by --TESTCD)

or categories (as defined by --CAT), there will of course be more tabs in this dialogue, so that

we can define --TESTCD/--CAT filters for each dataset that has controlled terminology for --

TESTCD and/or --CAT, or decide to not do any filtering at all.

Later we will see that we can switch this filtering completely off using the "Options" - the

default is to present the user the possibility to apply filtering each time the "Start" button has

been clicked.

After clicking "OK", the loading process starts.

Page 12 of 72

The snapshot above shows that all four files have completely been loaded

In case you try to load a file that is not a valid Dataset-XML file, you will get an error message,

and the file will be skipped. For example:

When starting to load the first file, the system will check whether the Study-OID of the Dataset

-XML file corresponds to that given in the define.xml file. If it does not, the following dialogue

is displayed:

This is being done to avoid that one loads data that does not belong to the metadata given in

the define.xml file. One can then either skip this Dataset-XML file, skip all Dataset-XML files in

the series for which there is no correspondence, load the file anyway, or load the file anyway

and stop checking on the Study-OID.

If all files are loaded correctly, a new window is displayed, in this case:

Page 13 of 72

Showing the SDTM tables for the datasets "DM", "AE", “CM" and "LB":

Page 14 of 72

Remark that the table for the "DM" dataset is displayed as the first table, even when it is not

the first file in the list of files. For the LB dataset, only those records for LBTESTCD "GLUC",

"RBC" and "WBC" have been loaded.

6. Basic Features for Working with the Tables

One can easily switch between the tables by selecting (clicking) the desired tab, or using the

menu "Tools - View - Show last selected table" to view the last (previously) selected table. The

latter is also possible using "CTRL-B" thus allowing to quickly toggle between two tables. One

can also change the order of the tabs by using the menu "Tools - Change dataset order / tab

order":

Within each table, one can change the order of the columns by using drag-and-drop. For

example, if one would like to see the column "AGE" just after the column "USUBJID" in the

DM table, simply put the mouse pointer on the column header of "AGE" and then, drag that

column using the left mouse button pressed, and then release the left mouse button when it

has arrived immediately right of the "USUBJID" column. This will result in:

Page 15 of 72

One can also easily resize the display width of each column by clicking on the separator between two

column headers, and then dragging it to the left or the right. For example, clicking the separator on

the column header between "STUDYID" and "DOMAIN" and then dragging it to the right results in:

When navigating the mouse over a cell without clicking, a tooltip will show up displaying the

full contents of the cell (also when only a part of the cell is visible in the cell itself), with

additionally (in brackets) the variable name of that data point2. For example:

Additional information about a variable can be obtained by moving the mouse pointer over a

column header. A tooltip then pops up, displaying the variable label ("def:Label" in define.xml

1.0 or "Description" in define.xml 2.0), the data type, whether the field is mandatory, the

length for the field, and the name of the code list if applicable.

To select a single cell, just click the cell with the left mouse button. Later we will see how this

can be used for creating subsets of data to find related records in other datasets/domains

easily and quickly.

2 This feature has great potential. For example, when a coded value is given such as in LBLOINC (lab
test LOINC code), a lookup in the LOINC database can be performed and the details / explanation
of the code can be displayed.

Page 16 of 72

In Dataset-XML, each record has a record number (given by the "data:ItemGroupDataSeq"

attribute on the "ItemGroupData" element in the Dataset-XML file). This record number can

be made visible by hovering the mouse over the "STUDYID" cell:

The record number is really a property of the record itself, not just a sequence number in the

view (like in the SASViewer). So, when sorting or filtering the data, the record number for a

specific record remains the same:

This makes it easy for reviewers to reference a specific record in discussions with the sponsor

or with colleagues or other parties.

7. Basic Sorting within the Table

Basic sorting on the contents of a single column can be done by clicking the column header

using the left mouse button. For example, to sort the subjects in the DM table by age, one

clicks the column header of the "AGE" column, resulting in:

Page 17 of 72

The subjects are displayed in ascending order of age (youngest subject first). A second click on

the same column header then sorts the subjects in descending order of age (oldest subject

first):

8. Multiple Column Sorting within the Table

To sort multiple columns, use the menu "Tools – Sorting – Sort table", or use the keyboard

shortcut CTRL-T. The following dialogue is displayed in the case of the DM table:

Page 18 of 72

One can now select columns from the list on the left side, and add them to the "sorting list"

(on the right side) by clicking the "Add" button. For example, if we want to sort the subjects

by age (primary sort) and then by sex, we select "AGE" and "SEX" and then click the "Add"

button. This results in:

Using the "Remove" button, we can remove columns from the list. Using the "Move up" and

"Move down" buttons, we can change the sort order. Essentially, we can add as many columns

as we want to the list for sorting. When now clicking the "OK" button, the following dialogue

is displayed:

Page 19 of 72

A window shows up, which asks whether we would like to sort in ascending or descending

order. In case the variable is of data type "text", the sorting will be done alphabetically.

If, for example, we would like to have the female subjects to come before the male subjects

(secondary sort), and the oldest subjects first (primary sort), we need:

Clicking "OK" results in:

Remark again that we can use as much columns as desired for sorting.

9. Removing the Sorting

To remove all sorting, and return to the original sequence (i.e. the sequence order as in the

dataset), use the menu "Tools – Sorting – Unsort table", or simply use the keyboard shortcut

CTRL-U.

Page 20 of 72

10. Exporting Data Tables as Text Files

In some cases, it may be useful to be able to import Dataset-XML data in other software tools,

e.g. in software tools that do not understand XML yet. In such a case, one can always export

the data, or part of the data, as a text file.

In order to export data as text, use the menu "File – Export full dataset as text file" or "File –

Export table view as text file" or "File – Export selected cells as text file":

The difference between these three options is the following:

 If you choose "Export full dataset as text file", the whole dataset will be exported, even if

you first applied some filters (exception: when you implemented filters during loading of

the dataset) and with the data in the original order.

 If you choose "Export table view as text file", only the data that is currently displayed in

the table is exported, i.e. data that was "filtered out" will not be exported. The data is

exported in the order that is currently displayed. So for example, if you sorted the table

on a lab value, the data will be exported in the order of that value.

 If you choose "Export selected cells as text file", only those cells that are currently selected

will be exported. For example, if your current selection is:

Then only data for subjects 1118, 1356, 1007, and 1239, and for the columns "SUBJID", "AGE",

"RFSTDTC", "SEX" and "RACE" will be exported.

Page 21 of 72

The following dialogue is then displayed:

The first checkbox allows you to add a line with the variable names at the top of the export

file. The second checkbox allows you to add a line with the variable labels at the top of the

export file (or after the line with the variable names). For the separation of the fields, you have

the choice between the comma (i.e. file will be a CSV file), the semicolon, or the vertical bar

(as in HL7-v2 messages or the CDISC Lab Standard).

There is also a checkbox "put quotation marks around strings with spaces":

If this box is checked, the system will check whether a data value (or a variable label) contains

one or more spaces, and if so, will add quotation marks at the beginning and end of the string.

We then only need to select a file to export to, and click the "OK" button. An example result

is:

Page 22 of 72

11. Simple Validation of the Datasets

Now close the window containing the tables by either clicking the cross in the upper right

corner or by using the "File – Close window" menu.

In the main window, now click the button "Options" on the upper right side of the window:

This results in a new dialogue:

Remark that the contents of this dialogue may differ upon which version you are using. As the

software is open source, organizations/companies/developers may have added additional

features and options.

The options are divided into several categories. We will first discuss the "validation" options.

The following validation features have currently been implemented:

Page 23 of 72

 Check Study OID of the dataset against the Study OID in the define.xml. This option is

switched on by default – see later.

 Check uniqueness of USUBJID in DM/ADSL dataset. A basic rule of SDTM/SEND and of

ADSL datasets is that the value of "USUBJID" is unique within the DM or ADSL dataset.

When switching on this option, the uniqueness of "USUBJID" will be checked during

loading of the datasets, and cells violating this rule will be marked (i.e. obtain a red

background).

 Check USUBJID versus DM/ADSL dataset. Each value of "USUBJID" in any dataset must

also occur in the DM dataset (for SDTM and SEND) or in the ADSL dataset (for ADaM).

When checked, each occurrence of USUBJID will be checked against the values in the

DM or ADSL dataset. If a violation is found, the cell is marked.

 Check data type correctness. When checked, the system will check each value upon

loading whether it is correct with respect to the data type defined in the define.xml

file.

 Check age from birthdate and reference start date. The age of each subject (in the DM

or ADSL dataset) is calculated and compared to the value given in the "AGE" column.

If a discrepancy is found, the "AGE" cell is marked.

 Check values against reference range. Values of the variables --STRESN ("Numeric

Result/Finding in Standard Units") in the "Findings" data sets are compared to the

values given in the variables --STNRLO ("Reference Range Lower Limit") and --STNRHI

(("Reference Range Higher Limit"). If the value in --STRESN is outside the reference

range, the --STRESN cell is coloured yellow. E.g.:

Page 24 of 72

 Check values against code list. In case the variable is governed by a code list (except

for an external code list3), the value is checked against that code list (as given in the

define.xml file). If the given value is not a value from that code list, the cell is marked

as having an error (i.e. coloured red). For example:

 Check uniqueness of USUBJID / SEQ combinations. This option allows to check the

uniqueness of the combination of USUBJID and --SEQ in the datasets where both occur.

If a combination is found not to be unique within that dataset, both cells are marked

as having an error. Remark that currently, the system does not check uniqueness

across split domains. Validation of the uniqueness of the combination of USUBJID and

--SEQ is computing intensive and will usually considerably slow down the loading and

validation of the data sets, especially in the case of large data sets. In many cases, it is

advised to do this validation using OpenCDISC.

Let us now switch on a number of these options:

3 This may become a very useful feature in the future using web services

Page 25 of 72

Remark that for this tutorial, we intentionally introduced some errors and discrepancies in the

data sets.

After clicking OK in the "Options" dialogue, clicking the "Start" button now reloads all the files.

As we have added extra validation and an extra data set, loading of the files will take

somewhat more time. The result is:

For the DM data set, we immediately see that there are two "warnings" (cells with an orange

background): the cell for RFENDTC ("Subject Reference End Date/Time") containing the value

"2012-09-0a) contains an invalid value for the data type "datetime" (as defined in the

define.xml file). Also the cell with the value "2013-03-32" is marked, as there is no date

"February 32, 2013"4.

Let us now switch to the CM ("Concomitant Medications") table.

After scrolling down a bit, we can e.g. find the following:

4 Remark that also the date "2013-02-29" would be marked as being incorrect, as there is no
February 29th in 2013.

Page 26 of 72

Some of the cells are coloured orange (i.e. warning), and when holding the mouse over such

a cell a tooltip is shown giving more information. In this case, it states that the data type is

invalid, as "integer" was expected. The reason for this is probably an error in the define.xml

where "integer" was defined as being the data type for CMDOSE, whereas "float" would have

been more appropriate.

12. Basic Validation That Is Always Done

As already stated, even when none of the checkboxes from the "Options" dialogue is checked,

a basic validation will always be performed. This basic validation is currently limited to a check

whether a value is present in case the variable was defined as being mandatory (i.e.

"required"5 in SDTM/SEND/ADaM).

An example of a view that can be obtained in such a case6 is:

Giving an error for empty "USUBJID" and "AGE" cells, as these are "required" or "expected".

13. Filtering Options

The second tab of the "Options" panel ("Filtering and Sorting") allows us to set some

parameters for filtering before loading, based on --TESTCD and/or --CAT, or to completely

switch this off:

5 No check is being done for "expected" variables, as these can have null values, depending on the
value of other variables. In order to do "expected variable" validation, please use OpenCDISC.
6 For demonstrating this feature, we deliberately removed some data points from the data file.

Page 27 of 72

When the checkbox "Allow filters on --TESTCD / --CAT when loading files" is unchecked, the

dialogue allowing to set filters for each data set will not be displayed, and no filtering on --

TESTCD or --CAT will be performed at all. As we have seen, if a data set is large and has

controlled terminology on --TESTCD and/or --CAT, a suggestion is displayed in the filtering

panel to apply a filter. For example, for a large LB file:

The file size is displayed (78MB in this case) and a suggestion (red text) is displayed that it

might be worth applying a filter due to the file size. The file size threshold for displaying this

suggestion can be altered using the "Min. file size (MB) for filtering suggestions". For example,

if one wants to set it to 50MB, the value can easily be changed using the little "arrows":

Page 28 of 72

The value can be set between 1MB and 100MB. In case the "Allow filters" checkbox is

unchecked, the line for setting the threshold will disappear from the panel:

Page 29 of 72

Last but not least, you can set whether the tables should automatically be sorted by USUBJID

and --SEQ after loading. This might be useful in the case the original data set is not already

sorted.

14. Filtering Subjects

In many cases, users will not want to see all data of all subjects. Instead, they would like to

inspect data in detail of subpopulations of subjects, based e.g. on age, sex, site, lab values that

are out of the normal range, etc..

The "Smart Dataset-XML Viewer" has a good number of filtering capabilities to do so. These

capabilities come on top of the filtering based on --TESTCD when loading the data files.

First, let us load the "DM" dataset (DM.xml) only (we do not load any other datasets yet). We

can now sort on e.g. the age of the subjects, either by clicking the header of the "AGE" column,

or by using the "Tools – Sorting". As the study is an Alzheimer study, the age of the subjects

ranges between 50 and 89 years. Suppose we sort by age in a descending way:

We have already moved the "AGE" column to the left for better clarity. We are now interested

in the lab values of all subjects of 81 years and older. We can simply select these subjects using

the mouse. The selected cells are then coloured cyan:

Page 30 of 72

We now use the menu "Tools – Filtering – Filter on USUBJID".

The following dialogue is displayed:

Page 31 of 72

We can either do a manual selection of subjects (option "All Subjects") and pick the desired

ones from the list, or only pick subjects from the current subpopulation (explained later), or

filter all currently selected (i.e. those selected using the mouse) subjects. In the latter case,

the dialogue is:

If this box is checked, the filtering will also be applied to all datasets that have been loaded

and for which a table exists. As we currently only have the DM table present, it does for now

not matter whether this box is checked or not. We can also give the filter a title. It will then

appear as a tooltip on the "DM" tab. If "apply to all datasets" was checked, the filter title is

also displayed on the top of the window.

Now click the "OK" button. The DM table is refreshed and we now only see the subject of 81

years and older:

Page 32 of 72

The display order is identical to the original order (as in the original dataset). Remark that

when selecting subjects, it does not matter which column is used, so we just can select the

"AGE" cells, and then do a selection on subjects anyway - we do not first need to do the

selection using the "USUBJID" cells.

To remove the filtering, use the menu "Tools – Filtering – Remove filters":

However, we will keep working with the filtered table with subjects of 81 years and older.

We now would like to inspect the vital signs of this population of subjects. As the VS table is a

pretty large one, we only want to load the VS table so that it only contains the vital data of

our population (i.e. the subjects of 81 years and older). To do so, close the window with the

DM table.

Then add the VS.xml dataset to the list with files that need to be loaded, and click the "Start"

button. The following dialogue appears:

Page 33 of 72

It states that a filter has been applied in the previous step (resulting in 92 subjects of 81 years

and older), and now asks you whether you also want that filter being applied to the VS table.

If you click "Yes", only these 92 subjects will be loaded for as well the DM as the VS dataset,

all others will be ignored, i.e. not the complete dataset will be loaded7. If "No" is clicked, the

complete "DM" as well as the complete "VS" dataset will be loaded.

If you click "Yes", the following result is obtained:

7 This does not only make review easier, it also saves memory, which is important in the case of
very large datasets with millions of data points.

Page 34 of 72

Only displaying the vital signs of the subjects of 81 years and older. Remark that this filter can

be combined with a filter upon loading based on VSTESTCD (when the latter has a code list

attached).

15. Sorting and Filtering on Topic Variable

This brings us to a second possibility for sorting and filtering. Most of the "Findings" tables are

hyper vertical tables according to the "Entity - Attribute - Value" (EAV) model. This means that

there is a subject ID, a test code, and a test result. We can now sort on USUBJID and VSTESTCD

to ensure that we see e.g. all diastolic blood pressures of each single subject together8. So we

can use "Tools – Sorting" and then add "USUBJID" and "VSTESTCD" to the list on which sorting

must be applied:

8 In many cases, the tables are already organized per subject per test code, but this is not a
requirement.

Page 35 of 72

We are asked whether we should sort ascending or descending for both variables:

If we choose for "ascending" sorting for both variables, the result is:

Page 36 of 72

Suppose we are only interested in the pulse rate for now (VSTESTCD=PULSE). We can then

filter out all other test results, by using the menu "Tools – Filter on topic variable":

A list of all values of the topic variable9 (in this case VSTESTCD) is then displayed, from which

we choose "PULSE":

Remark that multiple selection is possible using the CTRL-key.

After clicking "OK", only the records for which VSTESTCD=PULSE are displayed, allowing us to

closely inspect the pulse rates of all subjects of 81 years and older:

9 In the case of a SUPP-- dataset, the topic variable is QNAM.

Page 37 of 72

Dragging the "VISITDY" column to the left allows a better interpretation of the data. E.g.:

If the data is not already sorted on VISITDY (within each subject) we can again use "Tools -

Sorting" and sort on USUBJID as primary variable and VISITDY as secondary variable. Of course,

we additionally can do all kind of sorting, e.g. on VSPOS.

Page 38 of 72

To remove the filter that we applied (using VSTESTCD=PULSE) use the menu "Tools – Filtering

– Remove filters". The following dialogue is displayed:

If we select "Yes", the un-filtering will be applied on all currently loaded datasets. If we select

"No", only the currently displayed table will be un-filtered. In this case, it does not matter, as

the filter was on the topic variable "VSTESTCD" and this variable does not occur in the DM

table that was also loaded. The result is:

Page 39 of 72

Remark that this table is still only containing the information for the subjects of 81 years and

older, as the filter on age was applied during loading of the datasets. In order to see all subjects

again, we will have to reload the tables.

16. Advanced Filtering

Suppose that we want to inspect all the laboratory data of a few of the subjects of 81 years

and older, e.g. those senior subjects that have at least one abnormal haemoglobin value.

The best strategy for this is to first select the subjects of interest (e.g. based on age), apply the

filter, and then load the laboratory data for these subjects.

Before starting loading, we click the "Options" button, and check the option "Check values

against reference range":

As we want to see all laboratory data for our senior subjects, we can already switch off "Allow

filters on --TESTCD / --CAT". It is however usually better to do this on the dataset level. So we

leave the box checked for the moment.

Page 40 of 72

We now only set DM.xml file to be loaded:

And then start loading:

As the define.xml file contains controlled terminology for LBTESTCD and IETESTCD, the

filtering dialogue is presented (later we will learn how to switch it off), but we can just go with

the option "No filter on LBTESTCD" for LB on and load the DM dataset.

We now first sort on age in the DM table and then use "Tools – Filtering – Filter on USUBJID"

to filter on subjects of 81 years and older:

Page 41 of 72

We also add a title in "Filter title" where we add a short description of about what our filter is

doing. We type in "Subjects of 81 years and older", and then click "OK". This again results in a

DM table only containing the subjects that are 81 years and older. Remark that in this case all

other subjects are kept in memory, so that un-filtering will lead to a view containing all

subjects again, at least when we use "Yes, remove on all datasets" when un-filtering.

In a second step, we can now load the vital sign and all laboratory data for this subset of

subjects (subjects of 81 years and older). First we add the VS.xml and the LB.xml to the list

(just leave the window with the DM table open for the moment).

Clicking the "Start" button results in the following dialog, as we still have a window with tables

open:

In most cases, the best choice will be "keep existing window and add newly provided

datasets". Keeping several windows open at the same time is often not such a good idea, due

to memory consumption.

We are now asked whether we want to apply our subject filter:

And if we click on "Yes":

Page 42 of 72

We might still have had the filter for LBTESTCD applied (left image), but as we now want to

see all lab results for our senior subjects, we select "No filter on LBTESTCD" (right image)

Our LB table then looks like:

Remark that the filter title "Subjects of 81 years and older" is displayed at the top:

Page 43 of 72

If we now scroll down, we will find a few lab values that are outside the reference range:

And we would like to concentrate on those subjects (with age > 80) that showed an abnormal

Haemoglobin value. To do so, we apply a "topic variable" filtering on LBTESTCD=HGB using

"Tools – Filtering – Filter on topic variable" and then pick "HGB", resulting in:

And we

We see that subject "01-701-1130" has a good number of "out of range" haemoglobin values,

on which we would like to concentrate.

We can now either isolate the data for subject "01-701-1130" by either using subject filtering

and only pick "01-701-1130", or by first selecting any cell for subject "01-701-1130" and then

choose "Tools – Filtering – Filter on USUBJID" and the check "Currently selected subject".

Page 44 of 72

When we then also check the box "Apply to all datasets", then we will also only see the data

of this single subject in the DM table and in the VS table.

Remark that we can of course also select 2 or 3 or more subjects that show "out of range"

Haemoglobin values.

In case we isolate the data of subject "01-701-1130", the DM table becomes:

Remark the title at the top. The VS table becomes:

Page 45 of 72

Also here, we could apply an additional filter, e.g. on "PULSE", but usually just sorting by

VSTESTCD and e.g. VISITDY will also do the job.

The LB table view now is:

If we now use "Tools – Filtering – Remove filters" and use "Yes – remove on all datasets", the

original views with all the subjects are displayed again.

Page 46 of 72

Resulting in:

If, however filtering was applied during loading of the datasets, the datasets will be displayed

with that filter applied.

17. Working with Supplemental Qualifiers

One of the great advantages of the Dataset-XML standard is that supplemental qualifier

variables can be kept in the original dataset, i.e. it is not necessary to generate (or "split of")

SUPP-- datasets. These variables can come after the timing variables, but need to be defined

as such in the "define.xml" structure by the "Role" attribute.

In many cases however, SUPP-- datasets will still be present in the submission. Therefore, the

"Smart Dataset-XML Viewer" has a number of features to connect data points in a SUPP--

dataset to the corresponding data point in the parent domain.

As an example, let us load the DM.xml dataset, and both the LB.xml and SUPPLB.xml datasets:

Page 47 of 72

This results in a new window with three tabs, one containing the DM table, one containing the

LB table and one containing the SUPPLB table, the latter looking like:

Further inspection of this table reveals that there are two different supplemental qualifiers:

LBTBSHI ("Lab Result/Upper Limit of Normal") and ENDPOINT ("Endpoint Flag Value"). Ideally,

we would like to see these as two columns in the LB table. This has however not been

implemented yet (the box "Bring SUPPQUAL data back to original dataset" is currently also

greyed out). We can however inspect the records in the SUPPLB domain and quickly find their

parent record(s) back in the LB domain.

In the SUPPLB table, select a single row that is of interest to you. For example:

Page 48 of 72

And then use the menu "Tools – Show parent record of SUPPQUAL record":

The software will now start searching in non-suppqual domains for the parent record, based

on the values of IDVAR and IDVARVAL. Soon the following dialog is shown:

And when clicking "OK", the system immediately selects the LB table and scrolls to and

highlights the related record:

All the same can also be achieved without needing the mouse by using the shortcut CTRL-S

("S" for SUPPQUAL), and confirming by pressing the return button.

One can now also easily switch back and forth (i.e. "toggle") between the SUPPLB table and

LB table (either by clicking the tabs, or use CTRL-B, or use the menu "Tools – View – “Show

last selected table" to inspect further details.

Page 49 of 72

The popping up of these messages can be switched off using the menu "Options – Setting"

and then selecting the tab "Details" and then selecting "Skip Dialogue for Parent Records

Results":

In order to remove the highlighting in the LB table, use the menu "Tools – Remove related

records / supplemental qualifiers highlighting".

Remark: in case the supplemental qualifier table has "--CAT" as "IDVAR", then in most cases

there are multiple records in the parent dataset that are related to that supplemental

qualifier. In this case all these records will be highlighted when the software toggles to the

parent dataset.

18. Bringing Non-Standard Variables Back to the Parent Dataset

Unfortunately, it is currently not allowed yet by CDISC nor the FDA to keep the non-standard

variables in the data set where they really belong. So sponsors usually "ban" these data points

to a supplemental qualifier data set in the very last step of preparing the submission.

Using the menu "Tools – Show parent record of SUPPQUAL record" one can already toggle

between a record in the SUPPxx data set and its parent record or records in the parent data

set. A new feature that recently has been added is to merge non-standard variable values back

into their parent domain during loading. This feature is still experimental and can be pretty

computing intensive in case both the SUPPxx dataset and the parent data set contain many

records (typical example: SUPPLB with LB).

We will demonstrate this feature using the files that can be found in the directory

"Files_from_LZZT_Pilot_2013_LBLOINC_Dataset-XML".

Page 50 of 72

After having loaded the define.xml file, we select the following files: "DM.xml", "AE.xml".

"DS.xml", and "LB.xml" as well as "SUPPAE.xml", "SUPPDM.xml", "SUPPDS.xml" and

"SUPPLB.xml":

In order to bring back non-standard variables to the parent domain during loading, we check

the checkbox "Bring SUPPQUAL data back to original dataset".

A message is displayed explaining that this is an experimental feature and may require extra

computing time:

Page 51 of 72

Remark that this feature relies that there is a "ValueList" attached to the QNAM variable of

the supplemental qualifier in the define.xml, containing all possible values for QNAM which

essentially equals to a list with the non-standard variables and their metadata (name, data

type, length, whether a code list is associated, etc.).

Our AE / SUPPAE, and DM / SUPPDM, and DS / SUPPDS data sets are all very small, so merging

the non-standard variables back to the parent domain will be very fast. In the case of LB /

SUPPLB, the system will need to merge almost 65,000 SUPPLB records back to the parent data

Page 52 of 72

set which contains almost 60,000 records. Although this seems a lot, it is done in less than half

a minute10.

The AE data set as displayed in the viewer is then displayed like:

An extra column is added to the display, showing the values for "AETRTEM" (label: "treatment

emergent flag"). These values are coloured blue, indicating this is a non-standard variable. Of

course one can now also move this column to the left, e.g. immediately after "AETERM":

The result for the DM data set is:

10 We are of course very curious about user experiences with data sets containing millions of data
points!

Page 53 of 72

One notices that the metadata for the non-standard variable as displayed as column header

tooltips.

For the LB dataset we obtain:

As the current implementation is dependent on whether a ValueList has been assigned to the

QNAM variable in the supplemental qualifier data set, the latter is also displayed, so that one

can still always use the classic mechanism using the menu "Tools - Show parent record of

SUPPQUAL record" (or using CTRL-S):

19. Working with Comments (CO) Dataset

A similar mechanism applies to records in the CO (Comments) dataset.

Page 54 of 72

In the set of test files, you can also find a set of datasets where the supplemental qualifiers

are not located anymore in SUPPxx datasets, but have been integrated in the parent datasets.

This test set also contains a CO.xml dataset.

First load the define.xml files from this set of files. If you did not do already, also clear the list

with files, and start adding the following files from the same directory: DM.xml, CO.xml,

AE.xml and DS.xml. Start loading this set of files and then select the CO table. You will find:

Now hold the mouse over the COVAL cell in the second row. You will see:

The value of COVAL contains more than 200 characters. When using SAS Transport 5, the value

would then have to be split over several columns COVAL, COVAL1, COVAL2, ..., as in SAS

Transport 5, the length of a variable value was limited to 200 characters. As Dataset -XML

however uses XML technology, there is no such limitation anymore.

In order to find the parent record for a record in the CO domain, select any cell from the record

you are interested in, e.g.:

Page 55 of 72

Then use the menu "Tools – Show parent record of CO record", or use the keyboard shortcut

CTRL-C ("C" for "Comment")

The system will then start searching for the parent record of the selected CO record, using the

information from RDOMAIN, IDVAR and IDVARVAL, and soon report:

When then selecting the "AE" table, the parent record(s) are highlighted:

Page 56 of 72

Just like in the case of SUPPQUAL records, one can now switch back and forth between the CO

table and the AE table (e.g. using CTRL-B) to inspect further details.

20. Working with Related Records (RELREC Dataset)

Now also load the RELREC.xml dataset from the same directory. The final result is:

In the RELREC dataset, records with the same value for "RELID" (last column in the view)

contain references to records that are related. For example, for RELID with value 01-701-1023-

E09 there are two entries in the dataset. This is however only visible after sorting the table on

RELID:

We can now easily find the related records in the AE and DS domain by selecting a cell with a

RELID (in this case 01-701-1023-E09) and then using the menu "Tools – Show related records":

Page 57 of 72

The system will then look up the related records based on the values of RDOMAIN, USUBJID

and IDVAR and IDVARVAL. Very soon the result is obtained:

If we now click the tab for the AE table, the system automatically scrolls to the related record

and highlights it:

Similarly, selecting the tab for the DS table, the system scrolls to the related record and

highlights it:

Page 58 of 72

Clearly demonstrating that the disposition event for the record with DSSPID=24 is related to

the AE with AESPID=E09.

In order to remove all highlighting of related records, use the menu "Tools – Remove related

records / supplemental qualifiers highlighting", or just use the keyboard shortcut CTRL-H.

21. Jumping to Corresponding Data in the DM Dataset

When inspecting data in a subject-related dataset, one can always jump to the corresponding

record in the DM dataset by selecting a line or cell in the other dataset for that subject, and

then either use the menu "Tools – View – Show corresponding DM record", or simply by using

the keyboard combination "CTRL-D" ("D" standing for "Demographics"). This automatically

opens the "DM" tab (when loaded) and selects and highlights the corresponding record.

For example, when inspecting a lab data point for a specific subject:

Using "CTRL-D" automatically immediately shows the corresponding record in the DM dataset:

Page 59 of 72

One can then toggle between the two datasets either using the mouse and clicking the tab at

the top, or using the menu "Tools – View – Show last selected table" or even easier by using

the keyboard combination "CTRL-B" ("B" for "back"). So in the above example, subsequently

using "CTRL-B" combination toggles between the record in the LB dataset and the record in

the DM dataset.

22. Showing Date of First and Last Study Treatment in the DM

Dataset

In the last few years, the SDTM DM domain has been overloaded with new variables that

contain information in domains such as DM that is already present in other datasets. The

reason for this is that the SASViewer is not able to make joins between tables (it also has no

instructions to do so). For example, the variables RFXSTDTC (Date/Time of first study

treatment) and RFXENDTC (Date/Time of last study treatment) have been added on request

of the FDA, although they are already present in the EX dataset (earliest value of EXSTDTC and

latest value of EXENDTC). Essentially, duplicating such information is bad practice, as the dates

do not correspond, it is unclear which of them is valid (data redundancy error). So RFXSTDC

and RFXENDTC were only added as the visualization was not capable of combining both pieces

of information.

For making the life of reviewers easier, we have incorporated such features in the "Smart

Dataset -XML Viewer". When both the DM and the EX datasets will be loaded, one can use the

option "Retrieve and show date of first study treatment exposure in DM" and "Retrieve and

show date of last study treatment exposure in DM" in the "Options" tab "Smart features":

Page 60 of 72

When then loading the datasets in the DM, holding the mouse over a cell with a USUBJID, then

a tooltip will show up displaying the date/time of first study treatment and the date/time of

last study treatment in a user-friendly format, e.g.:

This shows that the usage of "smart" tools like ours can in future allow CDISC to eliminate

redundant variables from the model again. For example, the column --DY could be auto-

generated by a software tool from RFSTDTC in the DM domain and the variable --DTC in the

observation domain. Or, the software tool could automatically calculate LBDY when LBDTC is

provided11.

11 The usage of a --DY variable when --DTC is present is essentially a violation of the third normal
form rule for good database design.

Page 61 of 72

23. On-the-Fly Calculation of Derived Variable Values

As stated before, the SDTM standard has been overloaded with derived variables as the

SASViewer and other FDA tools are unable to make joins between tables. So in SDTM there is

a large amount of variables that violates the well-known "normal forms" for good database

design. Examples are:

 All --DY variables - derived from --DTC and RFSTDTC

 The VISIT (visit name) - derived from VISITNUM - lookup in table TV

 --TEST - derived from --TESTCD (there is a 1:1 relationship)

In the latter case, --TEST can be obtained by a lookup in the define.xml, or from a database

with controlled terminology, e.g. through a web service.

For demonstration purposes, we implemented automated calculation / lookup for:

 Age from birthdate (when the latter is present)

 Automated, on-the-fly calculation of --DY variables (except for BRTHDTC) from

RFSTDTC in the DM table (when it is loaded)

 Automated, on-the-fly calculation of VISIT (visit name) from VISITNUM, when the TV

table is present

To do so, one should check the corresponding checkboxes "Check age from birthdate and

reference start date", "Show --DY value on --DTC" and/or "Get and show VISIT name on

VISITNUM", in the "Options" panel before starting generating the tables.

Page 62 of 72

When then loading is then executed, the tooltip on the respective cells also shows the "on-

the-fly calculated" or "looked up" value, independently from whether the --DY variable and

VISIT is present.

For example:

This shows the calculated LBDY from LBDTC and RFSTDTC – so NOT taken from the column

LBDY12.

In case "Get and show VISIT name on VISITNUM", a join is made with the TV table and the

"visit name" (VISIT) is looked up there, and shown as a tooltip:

During testing these features, we found that in several SDTM submissions, the --DY values

were not always correctly calculated, and/or the VISIT (name) was not always correctly listed.

Without our features however, there was no way to validate whether the --DY and/or VISIT

value is correct. Also OpenCDISC does not perform this validation.

Essentially, also "--TEST" is a derived or lookup variable. It can be regarded as a lookup from

the SDTM-IG and/or CDISC controlled terminology, as there is a 1:1 relation between –TESTCD

and --TEST. Recently, we also implemented a "fast lookup" for --TESTCD so that when the user

hovers the mouse over a --TESTCD cell, a web service makes a lookup in a remote database

(can be somewhere on the internet) and looks up the corresponding "test name" (--TEST), and

12 Essentially this means that in future, all or most of the --DY variables can be removed from the
SDTM model, as calculating them is done by the viewer or other tool anyway. This would seriously
contribute to the data quality of SDTM submissions (removal of redundancy that is currently
leading to possible data errors).

Page 63 of 72

displays it as a tooltip. Alternatively, the --TEST column could be automatically generated and

added by a web service. A screenshot how this looks like is given here.

For further details, please see the separate document "Smart Dataset-XML Viewer Web

Services ".

Remark that such features can be implemented for any coded values, also from external code

lists and dictionaries (SNOMED-CT, RxNorm, …). For example, three of our students have

recently developed a web service for looking up the details of LOINC codes. This enables to

show the extended information of any LBLOINC value (if present - we think it should) as a

tooltip. This feature further contributes to the integration with electronic health records, as

in the latter (e.g. HL7-CDA) the use of LOINC codes is usually mandatory.

Here is a screenshot on how this web service has been implemented in the Smart Dataset-

XML Viewer:

For further details and other currently implemented web services (such as from the National

Library of Medicine), see the separate document "Smart Dataset-XML Viewer Web Services".

Page 64 of 72

24. Additional Features: Interrupting the Loading Process

Loading very large datasets with millions of data points can take considerable time. As

described before, it often makes sense to first make selections based on test codes and of

subjects (subpopulations) and then load the data for this subpopulation only.

If one sees that loading a large dataset is taking too much time, and one decides to first define

a subpopulation of subjects and/or tests, one can always interrupt the current loading process

by clicking the "Interrupt" button. This button becomes enabled once the "Start" button has

been clicked, and becomes disables once all datasets have been loaded:

s

When the "Interrupt" button is clicked, the system will complete loading the row that was

busy loading, and then display the following message:

After clicking "OK", the tables are displayed as usual, but the "LB" table will be incomplete.

Datasets that were after "LB.xml" in the list of files will not be loaded, and no table will be

generated for them.

Page 65 of 72

25. Setting the Font Size for the Tables

The font size for the tables can be changed by using the menu "Options – Table font size". A

dialog is then displayed allowing to set the requested font size using a spinner:

A font size between 8 and 16 can then be selected. The default font size is 12. Upon clicking,

the tables are immediately updated using the new font size.

26. Validation: Checking the Study OID versus the Study OID Given in

the define.xml File

Both the define.xml files (Dataset-XML files) contain information regarding which study is

represented by the data. In the define.xml, the Study OID is given by the "OID" attribute on

the "Study" element (Study/@OID). In the Dataset -XML files, the Study OID is given by the

"StudyOID" attribute on either the "ReferenceData" element (in case of study design datasets)

or the "StudyOID" attribute on the "ClinicalData" elements (in case of subject-related data).

By default, the software checks whether the Study OID given in each dataset corresponds to

the one in the define.xml. If there is a mismatch, the following dialogues is displayed:

Page 66 of 72

Four possibilities are then presented:

- Skip loading this dataset (user recognizes that this dataset does not correspond to the

one for which the metadata is defined in the define.xml)

- Skip all datasets where Study OID does not correspond to Study OID of define.xml (skip

all the datasets that seem not to belong to the submission represented by the

define.xml)

- Load dataset anyway (user believes that the dataset corresponds to the submission

the define.xml represents)

- Load dataset anyway and do not check Study OID anymore (same as "Load dataset

anyway" but the following datasets are not checked for a corresponding Study OID)

anymore.

In case the option "Skip dataset" is selected, the dataset will not be loaded. The system will

continue with the next dataset and check the Study OID again. In case the option "Skip all

datasets where Study OID does not correspond to Study OID of define.xml", a message will be

generated at the end of the process, displaying a list of datasets that were skipped due to

mismatch between the Study OIDs in the dataset and the define.xml:

In case the option "Load dataset anyway" the mismatch is ignored, the dataset is loaded, and

the next dataset is again checked for correspondence between Study OID of the define.xml

and that of the dataset. In case the option "Load dataset anyway and do not check Study OID

anymore" is selected, the dataset is loaded, and further checking of the Study OID is disabled.

Remark that this also unchecks the checkbox "Check Study OID against define.xml" in the

"Options" dialogue:

Page 67 of 72

If for the next loading, one would want to execute Study OID checking again, one needs to

check the box "Check Study OID against define.xml" again.

27. Validation: Using OpenCDISC within the Smart Dataset-XML

Viewer

to be implemented

28. Internationalization

One of the disadvantages of the SAS XPORT format was that only US-ASCII characters were

allowed. As SDTM is also used in countries that use other character sets (e.g. Japan) this was

a serious limitation for the use of SDTM in such countries and for submissions to local

regulatory authorities.

XML does not have such a limitation, and neither does Dataset-XML.

The "Smart Dataset-XML Viewer" supports Dataset-XML files that have values that have non-

ASCII characters13. We currently have tested this on files using French (e.g. êèé), Norwegian

(e.g. æøå), German (e.g. üäöß) and Japanese characters. For example:

Page 68 of 72

29. Display ADaM Dates as ISO-8601 in the Smart Dataset-XML

Viewer

When the user selects "ADaM" as the standard, a choice between displaying ADaM dates

(which are integers) as integer or as ISO-8601 is displayed:

If the user selects to display ADaM dates as integers, the result is:

If the user selects to display ADaM dates as ISO-8601, the result is:

This is just the display, internally, ADaM dates are still stored as integers.

13 We encourage the use of UTF-8 encoding for XML files in general

Page 69 of 72

Appendix 1: Starting the Smart Dataset-XML Viewer from other

programs and systems

The Smart Dataset -XML viewer has been designed in such a way that it can easily be

integrated with or started from other programs. There is a clear API and the software can also

be started with a parameter list in order to prepopulate some fields in the GUI and preset

some settings.

The following shows how to start the Smart Dataset -XML viewer from another Java-based

program. For this, the file "Smart_ Dataset -XML_Viewer.jar" needs to be in the classpath.

A simple example is:

import edu.fhjoanneum.ehealth.smartdatasetxmlviewer.*;

…

GUI gui = new GUI(); // sets up the Smart Dataset-XML Viewer GUI

// set the location of the define.xml file (case Windows system)

gui.setDefineFile (new

File("C:\\CDISC_SDTM_XML_Standard\\Files_from_MSG_XML\\define.xml"));

// set the define.xml version - default is "1.0" so only needed if you want to use a define.xml

1.0 file gui.setDefineVersion("1.0");

// sets the CDISC model for the viewer. The default is "SDTM, the two other possibilities are

"SEND" and "ADaM". Attention: case sensitive!

gui.setCDISCModel("SDTM");

// you can now define a set of Dataset-XML files to appear in the list in the GUI.

// This is done using a vector of "File" objects

Vector<File> sdsXMLFiles = new Vector<File>();

sdsXMLFiles.add(new

File("C:\\CDISC_SDTM_XML_Standard\\Files_from_MSG_XML\\dm.xml"));

sdsXMLFiles.add(new

File("C:\\CDISC_SDTM_XML_Standard\\Files_from_MSG_XML\\ae.xml"));

…

// and pass these to the viewer

gui.setSDSXMLFiles(sdsXMLFiles);

Page 70 of 72

// get a JFrame and display it

JFrame f = gui.getFrame();

f.setVisible(true);

That's it!

The second possibility is to execute the Smart Dataset-XML Viewer from another program,

script, … even from line command. In that case you can add a number of arguments with

values. The following parameters and values are available:

Parameters Values

-df filelocation passes the location of the define.xml file

-f filelist passes a list of Dataset-XML files

-d1 passes the information that the define.xml file is of version 1.0

-m sets the CDISC model to be used. Default is "SDTM". Other allowed

values are "ADaM" and "SEND" (case sensitive)

-dt sets that the data is "typed", i.e. "typed" ItemData is used (default is

untyped)

So for example, you would start the program (e.g. within a script by):

set the classpath

set CLASSPATH=C:\Smart_Dataset-XML_Viewer\Smart_Dataset-XML_Viewer.jar;C\vtd-

xml.jar;.\log4j-1.2.13.jar

run the software

java -Xms256M -Xmx1024M -cp %CLASSPATH%

com.xml4pharma.smartsdsxmlviewer.gui.GUI

-df C:\CDISC_SDTM_XML_Standard\Files_from_MSG_XML\define.xml

-f C:\CDISC_SDTM_XML_Standard\Files_from_MSG_XML\dm.xml

C:\CDISC_SDTM_XML_Standard\Files_from_MSG_XML\ae.xml

-m SDTM -d1 -dt

Page 71 of 72

The "-Xms256M" and "-Xmx1024M" set the minimum and maximum amount of computer

memory the software is allowed to claim. It is advised to claim no more than 60% of the

available physical memory. So if you have 2GB memory machine, it is advised to not go beyond

-Xmx1228M.

The "-cp %CLASSPATH%" applies the class path defined in the first line.

The second line (-df) sets the location of the define.xml file. The two following lines pass two

files to be processed by the viewer, in the case the dm.xml and ae.xml files. In the last line, we

pass the information that the SDTM model needs to be used (but that is the default anyway)

and that the files use "typed" ItemData, through the "-dt" argument.

Although we speak of "lines" in the explanation, everything starting from "java" should go into

a single line, as it is a single command.

Appendix 2: Perspectives for the Future

Due to its open-source nature, the Dataset-XML Viewer allows to develop very interesting

extensions. For example, one could add a module that looks up additional information through

a web service about what a specific medication (CMTRT) exactly is and what active ingredients

it contains. E.g. in the above example, holding the mouse over a cell with CMTRT=LOPID could

lead to triggering a web service (e.g. querying RXList), and then display additional information

about LOPID as a tooltip or using a popup window.

At the moment of writing, eHealth students at the Applied University FH Joanneum in Graz

have recently developed such a web service for LOINC, which could then be used for obtaining

additional information of specific LBLOINC, EGLOINC and VSLOINC values.

Also, this could e.g. be used to look up the details of a SNOMED-CT code. In future, it would

also e.g. enable to connect to systems that have "artificial intelligence".

Page 72 of 72

References

[1] Blog – Working on and with CDISC
Standards

http://cdiscguru.blogspot.com/2016/08/why-

lobxfl-should-not-be-in-sdtm.html

[2] Download “Smart Dataset-XML
Viewer”

https://sourceforge.net/projects/smart-sds-

xml-viewer/files/

[3] JRE Oracle http://www.oracle.com/

http://cdiscguru.blogspot.com/2016/08/why-lobxfl-should-not-be-in-sdtm.html
http://cdiscguru.blogspot.com/2016/08/why-lobxfl-should-not-be-in-sdtm.html
https://sourceforge.net/projects/smart-sds-xml-viewer/files/
https://sourceforge.net/projects/smart-sds-xml-viewer/files/
http://www.oracle.com/

