
Signal Framework for Java ME

Introduction
Signal Framework is an open-source IoC, AOP and MVC framework for Java ME
(J2ME) based on Spring. The framework has been designed to overcome the
limitations of the CLDC API that prevent IoC containers implemented in Java SE
from running on J2ME implementations. Signal Framework uses regular Spring
XML configuration files, allowing developers to leverage existing tools and skill
sets while coping with the limitations of J2ME.

The following diagram illustrates the architecture of the framework:

The name of the framework was inspired by the Antenna library
(http://antenna.sourceforge.net/) and, obviously, Spring Framework.

The IoC container
The reflection support in the CLDC API is very limited compared to Java SE. The
API only allows objects to be constructed with default (no-arg) constructors. It is
not possible to pass arguments to constructors, invoke methods, access fields
or create dynamic proxies.

To overcome those limitations the IoC framework reads context configuration
files when an application is compiled and generates Java code responsible for
instantiating a context at runtime. When a J2ME application is started, it
executes the generated code instead of loading any configuration files. In
effect an application context is created at runtime without relying on XML
parsing or advanced reflection features. The footprint of the generated code is
very small, because the IoC runtime only consists of approximately 10 classes.
The generated code does not depend on any Spring libraries.

Even though the framework is geared towards the J2ME platform, the IoC
container can be used in any Java applications that need to take advantage of
Spring without relying on reflection or XML parsing (e.g. Android or GWT
platforms).

Signal Framework supports the following features of the Spring IoC container:

Spring XML configuration files

Singleton beans

Dependency injection through constructor arguments and properties

Autowiring

 Lazy initialization

Bean post-processors
(com.aurorasoftworks.signal.runtime.core.context.IBeanProcessor - an
equivalent of
org.springframework.beans.factory.config.BeanPostProcessor)

 Lightweight AOP based on auto-generated proxy objects

 com.aurorasoftworks.signal.runtime.core.context.IInitializingBean -
an equivalent of org.springframework.beans.factory.InitializingBean

 com.aurorasoftworks.signal.runtime.core.context.IContextAware - an
equivalent of org.springframework.beans.factory.BeanFactoryAware

The code generator is normally invoked by a Maven plugin that requires two
parameters: a name of a Spring configuration file and a name of an output Java
class. The generator does support the <import resource=”…”> tag so it is
possible to process multiple context configuration files with a single invocation
of the plugin.

The following example demonstrates a context configuration file and a
corresponding generated Java class:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="greeter"

class="com.aurorasoftworks.signal.examples.context.core.Greeter">

<constructor-arg ref="msgSource" />

</bean>

<bean id="msgSource"

class="com.aurorasoftworks.signal.examples.context.core.MessageSource">

<constructor-arg>

<map>

<entry key="greeting" value="Hello!" />

</map>

</constructor-arg>

</bean>

</beans>

public class ApplicationContext extends
 com.aurorasoftworks.signal.runtime.core.context.Context

{

 public ApplicationContext() throws Exception

 {

 /* Begin msgSource */

 ApplicationContext.this.registerBean("msgSource", new
com.aurorasoftworks.signal.examples.context.core.MessageSource(new
java.util.Hashtable(){{put("greeting", "Hello!"); }}));

 /* End msgSource */

 /* Begin greeter */

 ApplicationContext.this.registerBean("greeter", new
com.aurorasoftworks.signal.examples.context.core.Greeter(((com.aurorasoft
works.signal.examples.context.core.MessageSource)
GreeterContext.this.getBean("msgSource"))));

 /* End greeter */

 }

}

The framework does not currently support Ant, but Ant tasks could be easily
implemented as thin wrappers for the existing generator.

The AOP framework

In addition to making IoC tricky, the limitations of the CLDC API prevent existing
AOP frameworks from running on Java ME devices. The AOP Alliance API and
popular AOP libraries like AspectJ and JBoss AOP depend on
java.lang.reflect.* types that are not present in Java ME. Moreover, AOP
implementations often rely on custom class loaders and/or dynamic proxies
neither of which are supported by CLDC.

The AOP implementation provided by the Signal Framework is designed to work
on Java ME devices: it has a relatively small footprint, it only relies on CLDC
classes and it allocates as few temporary objects at runtime as possible. Those
features come at a price, however: the framework is not as feature-rich as its
desktop/enterprise counterparts and it only supports interception of interface

method calls.

The AOP framework overcomes the limitation of Java ME by relying on code
generation. When an application context is created at build time, the
framework identifies bean classes that implement the
com.aurorasoftworks.signal.runtime.core.context.proxy.IProxyTarget
interface and generates proxies for them. Those proxies are in turn used to
intercept calls and execute method interceptors.

This concept is similar to dynamic proxies supported by Java SE. Most classes
included in the AOP framework have corresponding types in Java SE, as shown
below:

Signal AOP type
(com.aurorasoftworks.signal.runti

me.core.*)
Java SE type

context.proxy.ProxyFactory java.lang.reflect.Proxy

context.proxy.IInvocationHandler java.lang.reflect.InvocationHandler

context.proxy.IMethodInterceptor org.aopalliance.intercept.MethodInterceptor

context.proxy.IProxy a return value of
java.lang.reflect.Proxy.newInstance

context.proxy.IProxyTarget any object
context.proxy.IProxyClass java.lang.Class

context.proxy.IMethodHandler java.lang.reflect.Method

Proxies are normally created by the ProxyFactory class. The most common way
of creating a proxy is passing a list of interceptors to the
IProxyFactory#createProxy(IProxyTarget target, IMethodInterceptor []
interceptors) method. An object returned by that method implements the
same interfaces as the passed target object and can be safely cast to those
interfaces.

The interception works in the following way:

Due to its simplicity the framework does have some limitations. Proxies created
by the AOP framework reuse array instances when passing arguments to an
invocation handler so that temporary objects do not need to be created. This
however implies that that proxies need to be synchronized (this is handled by
the code generator). In a multithreaded application this can lead to
performance issues. The proxy code is synchronized on a proxy instance so
multiple proxies of the same object can be used concurrently without blocking
any threads.

When primitive objects are passed to or returned from a proxy method they
need to be wrapped with object types like java.lang.Integer before being
passed. This is the only scenario that requires allocation of temporary objects.
Apart from wrapping primitives the AOP framework does not need to allocate
any temporary objects and can be used safely regardless of the quality of a
garbage collector.

The MVC framework

The MVC framework is based on IoC and AOP capabilities described in the
previous sections. The framework supports both MIDP and LWUIT APIs and it is
easy to add support for other view technologies if needed.

The framework does not impose any restrictions on the domain model or views,
as long as either LWUIT or MIDP is used. Instead, it is designed to make
implementation of controllers easy. The most important features implemented
in the controller layer are lazy initialization of controllers (and corresponding
views, if any) and declarative navigation rules defined in an IoC configuration
file.

A controller is a simple bean defined in an IoC application context. All

controllers need to implement the
com.aurorasoftworks.signal.runtime.ui.mvc.ICotroller interface, or subtypes
thereof. A controller manages part of an application workflow, which could be a
single view or a complex wizard consisting of multiple steps.

The most common type of a controller is a view controller. View controllers for
MIDP and LWUIT views need to implement
com.aurorasoftworks.signal.runtime.ui.mvc.midp.IViewController and
com.aurorasoftworks.signal.runtime.ui.mvc.lwuit.IViewController,
respectively. The framework automatically forwards commands
(javax.microedition.lcdui.Command and com.sun.lwuit.Command) to a controller
of the view that dispatched them. Multiple view controllers can point to the
same view.

The second type of a controller is a flow controller that orchestrates a reusable
process, typically a wizard consisting of multiple screens. Upon completion a
flow returns a result to its caller, much like a method invocation. Flow
controllers need to implement the
com.aurorasoftworks.signal.runtime.ui.mvc.IFlowController interface. Flows
can be chained together, i.e. a flow can start other flows, including instances of
the same flow class.

Dependencies between controllers are defined as bean dependencies, so that
controllers can "fire" events by invoking interface methods. This results in loose
coupling of controllers, declarative definition of navigation rules and type
safety. Interface method calls are intercepted by the framework to
transparently perform required processing like displaying a correct view,
registering command handlers and starting or stopping a flow.

In most cases it is desirable to have controllers and views lazily initialized. If so,
an application context needs to be configured to do so:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd"
 default-lazy-init="true">
 <!-- ... -->
</beans>

The most important bean in an MVC application is a dispatcher. The dispatcher
is a framework object that intercepts method calls and performs needed
processing like displaying a correct view or registering a command listener:

<bean id="dispatcher"
 class="com.aurorasoftworks.signal.runtime.ui.mvc.midp.Dispatcher"

/>

There are two implementations of the dispatcher concept:
com.aurorasoftworks.signal.runtime.ui.mvc.midp.Dispatcher and
com.aurorasoftworks.signal.runtime.ui.mvc.lwuit.Dispatcher, used in MIDP
and LWUIT applications, respectively.

A definition of a dispatcher is followed by controller and view definitions, as
shown below. Dependencies between controllers are defined as bean
dependencies.

<bean id="accountListViewCtl"
class="com.aurorasoftworks.signal.examples.ui.mvc.midp.AccountListViewCon
troller">
 <constructor-arg ref="accountListView" />
 <constructor-arg ref="accountService" />
 <property name="newAccountEvent" ref="newAccountCtl" />
 <property name="editAccountEvent" ref="editAccountCtl" />
</bean>

In the example above a controller named accountListViewCtl supports two
types of events: newAccountEvent and editAccountEvent that are wired to two
other controllers as bean properties. Those events are simply references to
interfaces shown below. The controller fires events by invoking interface
methods which are in turn intercepted by the dispatcher.

public interface INewAccountEvent
{
 void onNewAccount();
}

public interface IEditAccountEvent
{
 void onEditAccount(IAccount account);
}

The following diagram illustrates the sequence of calls that are executed to
handle user input in the scenario described above:

A command selected by a user is sent to the dispatcher
(CommandListener.commandAction), which in turn forwards it to the active
controller (ICommandHandler.handleCommand). AccountListViewController reacts
to the command by firing the INewAccountEvent.onNewAccount event that gets
intercepted by the dispatcher. The dispatcher deactivates
AccountListViewController, changes current view to the one associated with
NewAccountViewController and activates it. The transition from one controller to
another is correctly reflected in the state of the application:
NewAccountViewController is the active controller and its view is displayed in
the screen.

The source code distribution of the Signal Framework contains a sample GUI
application implemented in both MIDP and LWUIT technologies that
demonstrates the usage of MVC concepts.

Summary

The framework has been designed to balance two conflicting requirements:
reuse as much of the Spring code as possible and make it easy to add support
for other IoC containers in the future, if needed. The functionality described in
this article was implemented with a reasonably small effort: approximately
10 000 LOC, excluding sample applications included in the source code
distribution.

Some tradeoffs had to be made because of the limitations of the Java ME
platform; most notably the framework does not support annotations and
instead requires application classes to implement framework interfaces in some
cases. For the same reasons, generics are not used in the framework API.

After several beta releases the framework is now reasonable mature and

contains all major features that have been planned. A production release
should be available by January 2010.

Additional information on the framework can be found at the following location:
http://www.aurorasoftworks.com/products/signalframework

Marek Wiącek, SCEA

http://www.aurorasoftworks.com/products/signalframework

