Stable Graphical Model Learning (StabLe) is an algorithm for learning the structure and parameters of stable graphical (SG) models from data.
Stable random variables are motivated by the central limit theorem for densities with (potentially) unbounded variance and can be thought of as natural generalizations of the Gaussian distribution to skewed and heavy-tailed phenomenon. SG models are multi-variate stable distributions that represent Bayesian networks whose edges encode linear dependencies amongst random variables. A preprint version of the manuscript describing stable graphical models is available at http://arxiv.org/abs/1404.4351.
Categories
Machine LearningLicense
GNU General Public License version 3.0 (GPLv3)Follow StabLe
nel_h2
Gen AI apps are built with MongoDB Atlas
MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of StabLe!