Parses PDF files of scientific articles based on naive bayes and sophisticated heuristics. The output is a XML file that contains the parsed data. Meta data is detected and marked as such.

The meta data contains the following elements:

- Title
- Authors
- Abstract
- Text
- Headlines
- Enumerations
- References (Literature)

In the first step, the text elements are divided into blocks (similar to paragraphs) and after that, predictions for each element are made.

The project contains three runnable classes that can work on given PDFs in batch mode via threading:

a) BatchHeuristic: A parser that uses defined heuristics and rules. Especially applicable for articles with a broad set of layouts (e.g. PeDocs, http://www.pedocs.de/).
b) BatchHybrid: A parser that uses machine learning (Naive Bayes) to find the correct element. Useful for e.g. ACL.
c) ModelGenerator: Generates a training model, used by BatchHybrid, from given PDF and XML file

Features

  • Batch mode for fast execution
  • Understands various article styles
  • Includes a learning mechanism to adapt new styles

Project Activity

See All Activity >

Follow ScientificPdfParser

ScientificPdfParser Web Site

Other Useful Business Software
AI-generated apps that pass security review Icon
AI-generated apps that pass security review

Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
Try Retool free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of ScientificPdfParser!

Additional Project Details

Registered

2013-03-13