We present a classification and regression algorithm called Random Bits Forest (RBF). RBF integrates neural network (for depth), boosting (for wideness) and random forest (for accuracy). It first generates and selects ~10,000 small three-layer threshold random neural networks as basis by gradient boosting scheme. These binary basis are then feed into a modified random forest algorithm to obtain predictions. In conclusion, RBF is a novel framework that performs strongly especially on data with large size.

Features

  • big data
  • Random Bits
  • neural network
  • boosting
  • random forest
  • machine learning
  • data mining
  • prediction

Project Activity

See All Activity >

Follow Random Bits Forest

Random Bits Forest Web Site

Other Useful Business Software
Resolve Support Tickets 2x Faster​ with ServoDesk Icon
Resolve Support Tickets 2x Faster​ with ServoDesk

Full access to Enterprise features. No credit card required.

What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
Try ServoDesk for free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Random Bits Forest!

Additional Project Details

Languages

English

Programming Language

C, C++

Related Categories

C++ Neural Network Libraries, C++ Big Data Tool, C Neural Network Libraries, C Big Data Tool

Registered

2015-10-10