Qwen2.5-VL-7B-Instruct is a multimodal vision-language model developed by the Qwen team, designed to handle text, images, and long videos with high precision. Fine-tuned from Qwen2.5-VL, this 7-billion-parameter model can interpret visual content such as charts, documents, and user interfaces, as well as recognize common objects. It supports complex tasks like visual question answering, localization with bounding boxes, and structured output generation from documents. The model is also capable of video understanding with dynamic frame sampling and temporal reasoning, enabling it to analyze and respond to long-form videos. Built with an enhanced ViT architecture using window attention, SwiGLU, and RMSNorm, it aligns closely with Qwen2.5 LLM standards. The model demonstrates high performance across benchmarks like DocVQA, ChartQA, and MMStar, and even functions as a tool-using visual agent.

Features

  • Multimodal support for images, videos, and text
  • Capable of structured document understanding (invoices, tables, forms)
  • Visual localization via bounding boxes and stable JSON output
  • Processes long videos with dynamic FPS sampling and temporal alignment
  • Enhanced ViT with window attention, SwiGLU, and RMSNorm
  • Built-in support for visual tool use and screen interaction
  • Compatible with Hugging Face Transformers and Qwen VL utilities
  • Context length support up to 32,768 tokens with YaRN for long inputs

Project Samples

Project Activity

See All Activity >

Categories

AI Models

Follow Qwen2.5-VL-7B-Instruct

Qwen2.5-VL-7B-Instruct Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Qwen2.5-VL-7B-Instruct!

Additional Project Details

Registered

2025-07-02