Python 3 code to reproduce the figures in the books Probabilistic Machine Learning: An Introduction (aka "book 1") and Probabilistic Machine Learning: Advanced Topics (aka "book 2"). The code uses the standard Python libraries, such as numpy, scipy, matplotlib, sklearn, etc. Some of the code (especially in book 2) also uses JAX, and in some parts of book 1, we also use Tensorflow 2 and a little bit of Torch. See also probml-utils for some utility code that is shared across multiple notebooks.

Features

  • Python code for "Probabilistic Machine learning" book by Kevin Murphy
  • Run notebooks in colab
  • Documentation available
  • Examples available
  • Run the notebooks locally
  • Cloud computing

Project Samples

Project Activity

See All Activity >

Categories

Machine Learning

License

MIT License

Follow pyprobml

pyprobml Web Site

You Might Also Like
Our Free Plans just got better! | Auth0 by Okta Icon
Our Free Plans just got better! | Auth0 by Okta

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of pyprobml!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Registered

2024-08-01