
A Manual for use of PyPedal
A software package for pedigree analysis

Release 2.0.0rc2

John B. Cole

November 29, 2005
Revised March 11, 2008

Animal Improvement Programs Laboratory, Agricultural Research Service, United States
Department of Agriculture, Room 306 Bldg 005 BARC-West, 10300 Baltimore Avenue,

Beltsville, MD 20705-2350

Abstract

Cole, J.B. 2008. A Manual for use of PyPedal: A software package for pedigree analysis. Animal Improvement
Programs Laboratory, Agricultural Research Service, United States Department of Agriculture.

This manual in twelve chapters describes PyPedal (v 2.0), a software package for pedigree analysis, report generation,
and data visualization. Metrics include coefficients of inbreeding and relationship, effective founder and ancestor num-
bers, and founder genome equivalents. Tools are provided for identifying ancestors and descendants, computing coef-
ficients of inbreeding from potential matings, quantifyingpedigree completeness, and visualizing pedigrees. Scripting
support is provided by the Python programming language; this language may be used to easily automate analyses and
implement new features. Input and output files utilize plain-text formats. The program has been used for the analysis of
dairy cattle and working dog pedigrees. PyPedal runs on the GNU/Linux and Microsoft Windows operating systems.
The program, documentation, and examples of usage are available athttp://pypedal.sourceforge.net/.

Mention of trade names or commercial products in this manualis solely for the purpose of providing specific informa-
tion and does not imply recommendation or endorsement by theU.S. Department of Agriculture.

All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without
regard to race, color, national origin, religion, sex, age,marital status, or handicap.

Revised March 11, 2008

http://pypedal.sourceforge.net/

ii

Legal Notice

The only people who have anything to fear from free software are those whose products are worth even
less. — David Emery

Copyright (c) 2002-2008. John B. Cole. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

Disclaimer

The author of this software does not make any warranty, express or implied, or assume any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or representthat
its use would not infringe privately-owned rights. Reference herein to any specific commercial products, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the author. The views and opinions of authors
expressed herein do not necessarily state or reflect those ofthe United States Government and shall not be used for
advertising or product endorsement purposes.

License

This is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later
version.

This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

i

ii

CONTENTS

1 Introduction 5
1.1 Implemented Features. 6
1.2 Where to get information and code. 7
1.3 Acknowledgments. 7
1.4 Disclaimer . 7

2 Installing PyPedal 9
2.1 Overview of installation. 9
2.2 Testing the Python installation. 10
2.3 Installing PyPedal. 10
2.4 Testing the PyPedal Installation. 12

3 High-Level Overview 13
3.1 Interacting with PyPedal. 13
3.2 The PyPedal Object Model. 13
3.3 Program Structure. 13
3.4 Options. 15
3.5 Pedigree Files . 19
3.6 Renumbering a Pedigree. 21
3.7 Logging. 21
3.8 Simulating Pedigrees. 22

4 Input and Output 25
4.1 Overview. 25
4.2 Input .26
4.3 Output . 28

5 Working with Pedigrees 31
5.1 Overview. 31
5.2 Inbreeding and Relationships. 32
5.3 Matings. 34
5.4 Relatives . 35

6 Using PyPedal Objects 37
6.1 Animal Objects. 37
6.2 The NewPedigree Class. 42
6.3 The PedigreeMetadata Class. 43

iii

6.4 The NewAMatrix Class . 45

7 Methodology 47
7.1 Reordering and Renumbering. 47
7.2 Animal Identification and Cross-References. 48
7.3 Measures of Genetic Variation. 48
7.4 Computational Details. 49

8 HOWTOs 53
8.1 Basic Tasks. 53
8.2 Calculating Measures of Genetic Variation. 55
8.3 Databases and Report Generation. 56
8.4 Pedigrees as Graphs. 57
8.5 Miscellaneous . 59
8.6 Contribute a HOWTO. 61

9 Graphics 63
9.1 PyPedal Graphics. 63

10 Report Generation 71
10.1 Overview. 71
10.2 Creating a Custom Internal Report. 72
10.3 Creating a Custom Printed Report. 74

11 Implementing New Features 77
11.1 Overview. 77
11.2 Module Template. 78
11.3 Solving the Problem. 79
11.4 Contributing Code to PyPedal. 84

12 Glossary 85

Appendices 85

A Example Programs 87

B GEDCOM File Handling 89

iv

LIST OF TABLES

2.1 Third-party extensions used by PyPedal.. 9

3.1 Options for controlling PyPedal.. 16

3.2 Pedigree format codes.. 20

4.1 PyPedal input and output methods.. 25

6.1 Attributes ofNewAnimal objects.. 37

6.2 Methods ofNewAnimal objects. 40

6.3 Attributes ofLightAnimal objects. 40

6.4 Methods ofLightAnimal objects.. 41

6.5 Attributes ofSimAnimal objects.. 41

6.6 Methods ofSimAnimal objects. 42

6.7 Attributes ofNewPedigree objects. 42

6.8 Methods ofNewPedigree objects.. 42

6.9 Attributes ofPedigreeMetadata objects. 43

6.10 Methods ofPedigreeMetadata objects.. 44

6.11 Attributes ofNewAMatrix objects. 45

6.12 Methods ofNewAMatrix objects.. 45

7.1 Animal identification and cross-references.. 48

9.1 Default graphics formats.. 63

10.1 Columns in pedigree database tables.. 71

A.1 Example programs distributed with PyPedal.. 87

1

B.1 GEDCOM 5.5 data records and tags imported by PyPedal.. 89

B.2 GEDCOM 5.5 data records and tags exported by PyPedal.. 89

2 List of Tables

LIST OF FIGURES

3.1 Simulated pedigree using default options. 23

8.1 Pedigree loaded from a string. 61

9.1 Pedigree 2 from Boichard et al. (1997). 64

9.2 A pedigree with strings as animal IDs. 65

9.3 German Shepherd pedigree. 65

9.4 Newfoundland colored pedigree. 66

9.5 Average inbreeding by birth year for the US Ayrshire cattle population. 67

9.6 Pseudocolored NRM from the Boichard et al. (1997) pedigree . 68

9.7 Sparsity of the NRM from the Boichard et al. (1997) pedigree . 69

10.1 Example of a printed three generation pedigree.. 73

11.1 Colorized version of the pedigree in Figure 9.2. 83

3

4

CHAPTER

ONE

Introduction

Any sufficiently disguised bug is indistinguishable from a feature. — Rich Kulawiec

This chapter introduces the PyPedal module for Python 2.4, provides an overview of key features of the software, and
describes the contents of this manual.

PyPedal (PythonPedigree Analysis) is a tool for analyzing pedigree files. It calculates several quantitative measures
of genetic diversity from pedigrees, including average coefficients of inbreeding and relationship, effective founder
numbers, and effective ancestor numbers. Checks are performed catch common mistakes in pedigree files, such as
parents with more recent birthdates or smaller ID numbers than their offspring and animals appearing as both sires and
dams in the pedigree. Tools for pedigree visualization and report generation are also provided. PyPedal only makes
use of information on pedigree structure, not individual genotypes. Allelotypes can be assigned to founders for use
in gene-dropping simulations to calculate the effective number of founder genomes, but no other measures of alleic
diversity are currently supported.

PyPedal is a Python (http://www.python.org/) language module that may be called by programs or used
interactively from the interpreter. You must have Python 2.4 (or later) installed in order to use PyPedal as PyPedal
makes use of features found only in that version. The Numarray module must also be installed in order for you to use
PyPedal, and may be found athttp://www.stsci.edu/resources/software_hardware/numarray.
In addition, there are a number of third-party packages usedby PyPedal; they are discussed in Chapter2.

This manual is the official documentation for PyPedal. It includes a tutorial and is the most authoritative source of
information about PyPedal with the exception of the source code. The tutorial material will walk you through a set of
manipulations of a simple pedigree. All users of PyPedal areencouraged to follow the tutorial with a working PyPedal
installation. The best way to learn is by doing — the aim of this tutorial is to guide you along this doing.

This content of this manual is broken down as follows:

License Chapter?? describes the license under which PyPedal is distributed. It is important that you review the
license before using the program.

Installing PyPedal Chapter2 provides information on testing Python and installing PyPedal.

High-Level Overview Chapter3 gives a high-level overview of the components of the PyPedalsystem as a whole.

Methodology Chapter7 provides a brief overview of the methodology used to calculate measures of genetic diversity.

HOWTOs Chapter8 provides demonstrations of how to perform common tasks.

Graphics Chapter9 provides details on producing graphics with PyPedal.

Reports Chapter10provides details about the report generation tools available in PyPedal.

5

http://www.python.org/
http://www.stsci.edu/resources/software_hardware/numarray

Implementing New FeaturesChapter11 introduces the idea of extensibility and walks the reader through the devel-
opment of a new PyPedal routine.

Applications Programming Interface Chapter?? includes a complete reference, including useage notes, forall
functions in all PyPedal modules.

Glossary Chapter12provides a glossary of terms.

References and Indicesare provided at the end of the manual.

1.1 Implemented Features

A full list of features, including notes on useage and computational details, is provided in Chapter??. Some of the
notable features of PyPedal include:

• Reading pedigree files in user-defined formats;

• Checking pedigree integrity (duplicate IDs, parents younger than offspring, etc.);

• Generating summary information such as frequency of appearance in the pedigree file;

• Reordering and renumbering of pedigree files.

• Computation of the numerator relationship matrix (A) from a pedigree file using the tabular method;

• Inbreeding calculations for large pedigrees;

• Computation of average total and average individual coefficients of inbreeding and relationship;

• Calculation of coefficients of partial inbreeding using aniterative tabulat method (Lacy, Alaks, and Walsh 1996;
Gulisija, Gianola, Weigel, and Toro 2006);

• Calculation of coefficients of ancestral inbreeding usingthe methods of Ballou (1997) or Suwanlee et al. (2007);

• Decomposition ofA into T andD such thatA = TDT ′;

• Computation of the direct inverse ofA (not accounting for inbreeding) using the method of Henderson (1976);

• Computation of the direct inverse ofA (accounting for inbreeding) using the method of Quaas (1976);

• Storage ofA and its inverse between user sessions as persistent Python objects using thepickle module to avoid
unnecessary calculations;

• Calculation of theoretical and actual effective population sizes;

• Computation of effective founder number using the exact algorithm of Lacy (1989);

• Computation of effective founder number using the approximate algorithm of Boichard et al. (1997);

• Computation of effective ancestor number using the algorithms of Boichard et al. (1997);

• Selection of subpedigrees containing all ancestors of an animal;

• Identification of the common relatives of two animals;

• Calculation of the inbreeding of offspring from a prospective mating;

6 Chapter 1. Introduction

• Output to ASCII text files, including matrices, coefficients of inbreeding and relationship, and summary infor-
mation;

• Simulation of pedigrees using an algorithm derived from that in Matvec 1.1a;

PyPedal has been used to perform calculations on pedigrees as large as 600,000 animals and has been used in scientific
research (Cole, Franke, and Leighton 2004; Cole 2007).

1.2 Where to get information and code

PyPedal and its documentation are available at:http://pypedal.sourceforge.net/. The Source-
forge site, http://sourceforge.net/projects/pypedal/, provides tools for reporting bugs
(https://sourceforge.net/tracker/?func=add&group_id=106679&atid=645233, making fea-
ture requests (https://sourceforge.net/tracker/?func=add&group_id=106679&atid=645236),
and discussing PyPedal (https://sourceforge.net/forum/?group_id=106679).

1.3 Acknowledgments

PyPedal was initially written to support the author’s dissertation research while at Louisiana State University, Baton
Rouge (http://www.lsu.edu/). The initial development was supported in part by a grant from The Seeing Eye,
Inc., Morristown, NJ, USA. It lay fallow for some time but hasrecently come under active development again. This is
due in part to a request from colleagues at the University of Minnesota that led to the inclusion of new functionality in
PyPedal. The author wishes to thank Paul VanRaden for very helpful suggestions for improving the ability of PyPedal
to handle certain computations in large pedigrees. Additional feedback in the form of bug reports, feature requests, and
discussion of computing strategies was provided by BradleyJ. Heins (University of Minnesota-Twin Cities), Edward
H. Hagen (Institute for Theoretical Biology, Humboldt-Universität zu Berlin), Kathy Hanford (University of Nebraska,
Lincoln), Thomas Kelly (Department of Animal and Poultry Science, University of Guelph), Thomas von Hassell, and
Gianluca Saba. Gregor Gorjanc has written a blog entry describing how to install PyPedal on Debian Linux. Fernando
Perez posted a LATEXpreamble to the NumPy listserver that dramatically improved the PDF version of This Manual.

The Newfoundland pedigree presented in Figure9.4 was taken from the NewFoundland Dog database
(http://www.newfoundlanddog-database.net/en/) and is used with permission.

The pedigree of European royalty used in the GEDCOM discussion (AppendixB), ged3.ged, was taken from the
Genealogy Forum website (http://www.genealogyforum.com/). It is believed to be in the public domain,
and is used with the knowledge of the website administrators.

1.4 Disclaimer

Reference to any commercial product is made with the understanding that no discrimination is intended and no en-
dorsement by USDA is implied.

1.2. Where to get information and code 7

http://pypedal.sourceforge.net/
http://sourceforge.net/projects/pypedal/
https://sourceforge.net/tracker/?func=add&group_id=106679&atid=645233
https://sourceforge.net/tracker/?func=add&group_id=106679&atid=645236
https://sourceforge.net/forum/?group_id=106679
http://www.lsu.edu/
http://ggorjan.blogspot.com/2007/04/installing-pypedal-under-debian.html
http://www.newfoundlanddog-database.net/en/
http://www.genealogyforum.com/gedcom/gedcom1/ged3.htm
http://www.genealogyforum.com/

8

CHAPTER

TWO

Installing PyPedal

As we acquire more knowledge, things do not become more comprehensible, but more mysterious. —
Will Durant

This chapter explains how to install and test PyPedal under Posix-type operating systems and Microsoft Windows.

2.1 Overview of installation

Before we can begin the tutorial, you need install and test Python, Numarray and some other Python extensions, and
PyPedal itself. The extensions that you need to install in order to use all of the features of PyPedal are listed in Table
2.1. Note that some extensions need to be installed before others: NumPy should be installed first, SQLite must be
installed beforepysqlite, andpyparsing and Graphviz must be installed beforepydot.

If you do not install one or more optional modules you will still be able to use PyPedal, although some features may
not be available to you. Details on installing the extensions listed above can be found on their respective websites. All
of these extensions are available for Unix-type operating systems (e.g. Linux, Mac OS X) as well as for Microsoft
Windows; most sites also provide binary installers for Windows. Python extensions can usually be installed by un-
zipping/untaring the archives, entering the folder, and issuing the command ‘python setup.py install’ as a
root/administrative user.

Note that Graphviz, NetworkX, PyGraphviz, PythonDoc, ReportLab, and SQLite are not installed by the Enthought
Python distribution for Windows.

Table 2.1: Third-party extensions used by PyPedal.

Extension Function URL
elementtree Lightweight XML processinghttp://effbot.org/zone/element-index.htm
Graphviz Draw directed graphs http://www.research.att.com/sw/tools/graphviz/
matplotlib Plotting, matrix visualization http://matplotlib.sourceforge.net/
NetworkX Network analysis https://networkx.lanl.gov/
NumPy Array manipulation http://www.numpy.org/
continued on next page

9

http://effbot.org/zone/element-index.htm
http://www.research.att.com/sw/tools/graphviz/
http://matplotlib.sourceforge.net/
https://networkx.lanl.gov/
http://www.numpy.org/

Extension Function URL
PIL Image processing http://effbot.org/zone/pil-index.htm
pydot Interface to Graphviz http://dkbza.org/pydot.html
PyGraphviz Interface to Graphviz https://networkx.lanl.gov/wiki/pygraphviz
pyparsing Text parsing http://pyparsing.sourceforge.net/
pysqlite Interface to SQLite http://initd.org/tracker/pysqlite
PythonDoc Generate API documentationhttp://effbot.org/zone/pythondoc.htm
ReportLab Generate PDF documents http://www.reportlab.org/
SQLite Lightweight SQL database http://www.sqlite.org/
testoob Advanced unit testing http://testoob.sourceforge.net/

2.2 Testing the Python installation

The first step is to install Python 2.4 (or later) if you haven’t already done so. Python is available at
http://sourceforge.net/projects/python/. Click on the link corresponding to your platform, and
follow the instructions presented there. Python can usually be started by typing ‘python’ at the shell (Posix) or
double-clicking on the Python interpreter (Windows). Whenyou start Python you should see a message such as:

Python 2.4 (#1, Feb 25 2005, 12:30:11)
[GCC 3.3.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.

If you have problems getting Python to work, contact your local support person or e-mail python-help@python.org for
help.

2.3 Installing PyPedal

In order to get PyPedal, visit the official website athttp://pypedal.sourceforge.net/. Click on the
”Sourceforge Page” link, click on the ”Download PyPedal” button, and select the latest file release. Files whose
names end in ”.tar.gz” are source code releases. The other files are binaries for a given platform (if any are available).

The CVS repository on the Sourceforge site is not in synch with the development tree; to get the latest version you
should download the source code release.

2.3.1 Installing on Unix, Linux, and Mac OSX

The source distribution should be uncompressed and unpacked as follows (for example):

gunzip pypedal-2.0.0a17.tar.gz
tar xf pypedal-2.0.0a17.tar.gz

Follow the instructions in the top-level directory for compilation and installation. Installation is usually as simple as:

python setup.py install

10 Chapter 2. Installing PyPedal

http://effbot.org/zone/pil-index.htm
http://dkbza.org/pydot.html
https://networkx.lanl.gov/wiki/pygraphviz
http://pyparsing.sourceforge.net/
http://initd.org/tracker/pysqlite
http://effbot.org/zone/pythondoc.htm
http://www.reportlab.org/
http://www.sqlite.org/
http://testoob.sourceforge.net/
http://sourceforge.net/projects/python/
http://pypedal.sourceforge.net/

Important Tip Just like all Python modules and packages, the PyPedal module can be invoked using either the
‘import PyPedal’ form, or the ‘from PyPedal import ...’ form. All of the code samples will assume
that they have been preceded by statements such as:

>>> from PyPedal import <module-name>

A complete list of modules is provided in Chapter??.

2.3.2 Installing on Windows

To install PyPedal, you need to be logged into an account withAdministrator privileges. As a general rule, always
remove any old version of PyPedal before installing the nextversion.

Please note that PyPedal has been lightly-tested on WindowsXP, but I cannot guarantee that it runs with-
out problems on Win-32 platforms! PyPedal should install and run properly on Win-32 as long as the de-
pendencies listed above are satisfied. Enthought provides aPython distribution that is bundled with a number
of extras, including most of the dependencies needed to install and run PyPedal in the Windows environment
(http://code.enthought.com/enthon/#download). It is a large download (120 MB) but greatly simpli-
fies installation. If you use the Enthought distribution youwill still need to download and install Graphviz, ReportLab,
and SQLite from their respective sites (Table2.1). Graphviz and ReportLab are easy to install. Installationinstructions
for SQLite are provided below.

FIX ◮◮◮ There is not yet an easy way to install thePyGraphviz library under Windows. PyGraphviz is
used by some of the graphics routines for rendering pedigrees. Windows users will need to refer to Chapter9
for details on routines which require this module. ◭◭◭

It is possible that the installation may fail with the message

error: Download error: (10060, ’Operation timed out’) .

This means that the installer was trying to download a dependency and that operation was unsuccessful. This can
usually be remedied by simply running the installer again.

In order to get your installation working correctly you willneed to set some environment variables. Under Windows
XP (and 2000) you access those variables by right-clicking on the My Computericon on your desktop, selecting
Properties, selecting theAdvancedtab, and clicking theEnvironment Variablesbutton. First, add;C:\Python24
to the PATH by selecting it in theSystem Variableslist and clickingEdit. Next, create a PYTHONPATH environment
variable by clicking theNew button underUser Variables, entering the path to the PyPedal directory in the
Variable value field.

The documentation for SQLite for Windows is kind of vague. I got it to work by downloading the files ‘sqlite-3 2 -
7.zip’ and ‘sqlitedll-3 2 7.zip’ and extracting their contents intoC:\Windows. Your mileage may vary.

Installation from source

1. Unpack the distribution using an unzipping utility such as 7-Zip (http://www.7-zip.org/) that under-
stands gzipped-and-tarred files. Once you’ve done that, open a shell by left-clicking on ”Start”, selecting ”Run”,
and typingcmd into the box. Navigate to the directory into which you unpacked the PyPedal distributio(this is
an example, your file location may vary):

2.3. Installing PyPedal 11

http://code.enthought.com/enthon/#download
http://www.7-zip.org/

C:\> cd C:\PyPedal

2. Build it using the distutils defaults:

C:\PyPedal> python setup.py install

This installs PyPedal inC:\python24\site-packages.

Installation on Cygwin

No information on installing PyPedal on Cygwin is available. If you manage to get it working, please let me know.

2.4 Testing the PyPedal Installation

To find out if you have correctly installed PyPedal, type ‘import PyPedal’ at the Python prompt. You’ll see one
of two behaviors (throughout this document user input and Python interpreter output will be emphasized as shown in
the block below):

>>> import PyPedal
Traceback (innermost last):
File "<stdin>", line 1, in ?
ImportError: No module named PyPedal

indicating that you don’t have PyPedal installed, or:

>>> import PyPedal
>>> PyPedal.__version__.version
’2.0.0b17’

indicating that PyPedal is installed.

12 Chapter 2. Installing PyPedal

CHAPTER

THREE

High-Level Overview

By a small sample we may judge the whole piece. — Miguel de Cervantes Saavedra

3.1 Interacting with PyPedal

There are two ways to interact with PyPedal: interactively from a Python command line, and programmatically using
a script that is run using the Python interpreter. The latteris preferred to the former for any but trivial examples,
although it is useful to work with the command line while learning how to use PyPedal. A number of sample programs
are included with the PyPedal distribution.

3.2 The PyPedal Object Model

At the heart of PyPedal are four different types of objects. These objects combine data and the code that operate
on those data into convenient packages. Although most PyPedal users will only work directly with one or two of
these objects it is worthwhile to know a little about each of them. An instance of theNewPedigree class stores a
pedigree read from an input file, as well as metadata about that pedigree. The pedigree is a Python list ofNewAnimal
objects. Information about the pedigree, such as the numberand identity of founders, is contained in an instance of
thePedigreeMetadata class.

The fourth PyPedal class,NewAMatrix, is used to manipulate numerator relationship matrices (NRM). When work-
ing with large pedigrees it can take a long time to compute theelements of a NRM, and having an easy way to save
and restore them is quite convenient.

PyPedal also providesLightAnimal andSimAnimal objects. LightAnimals are intended for use with the
graph theoretic routines provided inpyp_network and lack many of the attributes ofNewAnimal objects, such as
names, breeds, and alleleotypes.SimAnimals are intended for internal use only by the pedigree simulation routines.

A detailed explanation of each class is provided in Chapter6.

3.3 Program Structure

PyPedal programs load pedigrees from files and operate on those pedigrees. A program consists of four basic parts: a
header, an options section, pedigree creation, and pedigree operations. The program header is used to import modules
used in that program, and may include any Python module available on your system. You must import a module before
you can use it:

13

Program header -- load modules used by a program
from PyPedal import pyp_newclasses
from PyPedal import pyp_metrics

You should only import modules that you are going to use in your program; you do not need to import every PyPedal
module in every program you write.

PyPedal recognizes a number of diffferent options that are used to control its behavior (Section3.4). Before you can
load your pedigree into a PyPedal object you must provide a pedigree file name (‘pedname’) and a pedigree format
string (‘pedformat’). This is done by either creating a Python dictionary and passing it as a parameter whenpyp_-
newclasses.loadPedigree() is called or by specifying a configuration file name. For example, here is how
you would create and populate an options dictionary:

options = {}
options[’messages’] = ’verbose’
options[’renumber’] = 0
options[’pedfile’] = ’new_lacy.ped’
options[’pedformat’] = ’asd’
options[’pedname’] = ’Lacy (1989) Pedigree’

The syntax used in a configuration file is similar. Consider the file ‘options.ini’, which contains the same options as set
in theoptionsdictionary in the previous example:

options.ini
This is an example of a PyPedal configuration file
messages = verbose
renumber = 0
pedfile = new_lacy.ped
pedformat = asd
pedname = Lacy (1989) Pedigree

More details on configuration files are provided in Section3.4.1.

You may name your dictionary or configuration file whatever you like; the examples in this manual, as well as those
distributed with PyPedal, use the name ‘options’. Once you have defined your options to is time to load your
pedigree. This is as simple as callingpyp_newclasses.NewPedigree():

example = pyp_newclasses.loadPedigree(options)

If you would like to use a configuration file to set your pedigree options, supply the configuration file name using the
optionsfilekeyword:

example = pyp_newclasses.loadPedigree(optionsfile=’options.ini’)

Once you have loaded your pedigree file into aNewPedigree object you can unleash the awesome power of a fully-
functional PyPedal installation on it. For example, calculating the effective number of founders in your pedigree using
Lacy’s (1989) exact method is as simple as:

14 Chapter 3. High-Level Overview

pyp_metrics.effective_founders_lacy(example)

Example programs that demonstrate how to use many of the features of PyPedal are included in the ‘examples’
directory of the distribution.

3.4 Options

Many aspects of PyPedal’s operation can be controlled usinga series of options. A complete list of these options, their
defaults, and a brief desription of their purpose is presented in Table3.1. Options are stored in a Python dictionary
that you must create in your programs. You must specify values for thepedfileandpedformatoptions; all others are
optional. pedfileis a string containing the name of the file from which your pedigree will be read.pedformatis a
string containing a pedigree format code (see section3.5.1) for each column in the datafile in the order in which those
columns occur. The following code fragement demonstrates how options are specified.

options = {}
options[’messages’] = ’verbose’
options[’renumber’] = 0
options[’counter’] = 5
options[’pedfile’] = ’new_lacy.ped’
options[’pedformat’] = ’asd’
options[’pedname’] = ’Lacy Pedigree’
example = pyp_newclasses.loadPedigree(options)

First, a dictionary namedoptions is created; you may use any name you like as long as it is a valid
Python variable name. Next, values are assigned to several options. Finally, options is passed topyp_-
newclasses.loadPedigree(), which requires that you pass it either a dictionary of options or a configuration
file name. If you do not provide one of these, PyPedal will haltwith an error.

A single PyPedal program may be used to read one or more pedigrees. Each pedigree that you read must be passed
its own dictionary of options. The easiest way to do this is bycreating a dictionary with global options. You can
then customize the dictionary for each pedigree you want to read. Once you have created a PyPedal pedigree by
calling pyp_newclasses.NewPedigree(options) you can change the options dictionary without affecting
that pedigree because it has a separate copy of those optionsstored in itskw attribute. The following code fragment
demonstrates how to read two pedigree files using the same dictionary of options.

3.4. Options 15

options = {}
options[’messages’] = ’verbose’
options[’renumber’] = 0
options[’counter’] = 5

if __name__ == ’__main__’:
Read the first pedigree

options[’pedfile’] = ’new_lacy.ped’
options[’pedformat’] = ’asd’
options[’pedname’] = ’Lacy Pedigree’
example1 = pyp_newclasses.loadPedigree(options)

Read the second pedigree
options[’pedfile’] = ’new_boichard.ped’
options[’pedformat’] = ’asdg’
options[’pedname’] = ’Boichard Pedigree’
example2 = pyp_newclasses.loadPedigree(options)

Note thatpedformatonly needs to be changed if the two pedigrees have different formats. Onlypedfile hasto be
changed at all.

All pedigree options other thanpedfileandpedformathave default values. If you provide a value that is invalid the
option will revert to the default. In most cases, a message tothat effect will also be placed in the log file.

Table 3.1: Options for controlling PyPedal.

Option Default Note(s)
alleles sepchar ’/’ The character separating the two alleles in an animal’s allelotype. alle-

les sepcharCANNOT be the same assepchar!
animal type ’new’ Indicates which animal class should be used to instantiate animal records,

NewAnimal or LightAnimal (‘new’—‘light’).
counter 1000 How often should PyPedal write a note to the screen when reading large

pedigree files.
databasename ’pypedal’ The name of the database to be used when using thepyp_reports

nodule.
dbtable name filetag The name of the database table to which the current pedigree will be

written when using thepyp_reports module.
default fontsize 10 Specifies the default font size used inpyp _graphics. If the font size

cannot be cast to an integer, it is set to the default value of 10. Font sizes
less than 1 are set to the default of 10.

default report filetag Default report name for use bypyp_reports.
default unit ’inch’ The default unit of measurement for report generation (’cm’—’inch’).
debug messages 0 Indicates whether or not PyPedal should print debugging information.
f computed 0 Indicates whether or not coefficients of inbreeding have been computed

for animals in the current pedigree. If the pedigree format string includes
‘f’ this will be set to 1; it is also set to 1 on a successful returnfrom
pyp_nrm/inbreeding().

continued on next page

16 Chapter 3. High-Level Overview

Option Default Note(s)
file io 1 When true, routines that can write results to output files will do so and

put messages in the program log to that effect.
filetag pedfile filetagis a descriptive label attached to output files created when process-

ing a pedigree. By default the filetag is based onpedfile, minus its file
extension.

form nrm 0 Indicates whether or not to form a NRM and bind it to the pedigree as an
instance of aNewAMatrix object.

gen coeff 0 When nonzero, calculate generation coefficients using the method of Pat-
tie (1965) and store them in thegen_coeff attribute of aNewAnimal
object. The inferred generation stored in theigen attribute will be the
gen_coeff rounded to the nearest 0.5. When zero, thegen_coeff
is -999.

log long filenames 0 When nonzero, long logfile names will be used, which means that log
file names will include datestamps.

log ped lines 0 When> 0 indicates how many lines read from the pedigree file should
be printed in the log file for debugging purposes.

logfile filetag.log The name of the file to which PyPedal should write messages about its
progress.

messages ’verbose’ How chatty PyPedal should be with respect to messages to the user. ’ver-
bose’ indicates that all status messages will be written to STDOUT, while
’quiet’ suppresses all output to STDOUT.

missing bdate ’01011900’ Default birth date.
missing breed ’Unknown’ Default breed name.
missing byear 1900 Default birth year.
missing name ’Unknown’ Default animal name.
missing parent 0 Indicates what code is used to identify missing/unknown parents in the

pedigree file.
newanimal caller ’loader’ Internal parameter needed for addanimal() to work correctly with ASD

pedigrees.
nrm format ’text’ Format to use when writing an NRM to a file (’text’—’binary’).Array

elements in text files are separated bysepchar.
nrm method ’nrm’ Specifies that an NRM formed from the current pedigree as an instance of

aNewAMatrix object should (’frm’) or should not (’nrm’) be corrected
for parental inbreeding.

paper size ’letter’ Default paper size for printed reports (’A4’—’letter’).
pedcomp 0 When 1, calculate pedigree completeness using pedcompgens genera-

tions of pedigree.
pedcompgens 3 Number of generations of pedigree to use when calculating pedigree

completeness.
pedfile None File from which pedigree is read; must provided unless you are simulat-

ing a pedigree. Defaults to ’simulatedpedigree’ for simulated pedigrees.
pedformat ’asd’ See3.5.1for details.
pedname ’Untitled’ A name/title for your pedigree.
continued on next page

3.4. Options 17

Option Default Note(s)
pedgreeis renumbered 0 Indicates whether or not the pedigree has been renumbered.
pedigree summary 1 Indicates whether or not the pedigree loading details and summary are

printed to STDOUT. Output is only written ifmessageis set to ‘verbose’.
renumber 0 Renumber the pedigree after reading from file (0/1).
sepchar ’ ’ The character separating columns of input in the pedfile.
set ancestors 0 Iterate over the pedigree to assign ancestors lists to parents in the pedi-

gree (0/1).
set alleles 0 Assign alleles for use in gene-drop simulations (0/1).
set generations 0 Iterate over the pedigree to infer generations (0/1).
set offspring 0 Assigns offspring to their parent(s)’s unknown sex offspring list.
set sexes 0 Iterate over the pedigree to assign sexes to all animals in the pedigree

(0/1).
simulate fs 0 Flag indicating whether or not full-sib matings are allowed.
simulate g 3 Number of distinct generations in the simulated pedigree.
simulate ir 0.0 Immigration rate, the rate at which new founders with unknown parents

enter the population.
simulate mp 0 Flag indicating whether or not simulated animals may have missing par-

ents.
simulate n 15 Total number of animals in simulated pedigree, including founders.
simulate nd 4 Number of initial founder dams in pedigree.
simulate ns 4 Number of initial founder sires in pedigree.
simulate pedigree 0 Option to simulate a pedigree rather that load one from a file.All other

simulation-related variables are ignored when this is not set to 1.
simulate pmd 100 Maximum number of draws allowed when trying to sample parents that

comply with all restrictions.
simulate po 0 Flag indicating whether or not parent-offspring matings are allowed.
simulate save 0 Flag indicating whether or not the simulated pedigree should be written

to a file after it is created.
simulate sr 0.5 Sex ratio in simulated pedigree; ¡ 0.5 gives more females, ¿ 0.5 gives

more males.
slow reorder 1 Option to override the slow, but more correct, reordering routine used

by PyPedal by default (0/1). ONLY CHANGE THIS IF YOU REALLY
UNDERSTAND WHAT IT DOES! Careless use of this option can lead
to erroneous results.

3.4.1 Configuration Files

The Dict4Ini module (http://cheeseshop.python.org/pypi/Dict4Ini/0.4) is used to process config-
uration files, and in included with the distribution so that you do not need to download and install it. Dict4Ini objects
can be addressed as though they are standard Python dictionaries, which made it very easy to add configuration file
support to PyPedal. Configuration files consist of simplekeyword = valuepairs on separate lines1, and may include
comments.

1Please note that the Dict4Ini documentation referrs to sections. Sections are very commonly used in configuration files,but PyPedal does not
use them.

18 Chapter 3. High-Level Overview

http://cheeseshop.python.org/pypi/Dict4Ini/0.4

new_options.ini
This is an example of a PyPedal configuration file.
pedfile = new_lacy.ped
pedformat = asd
pedname = Lacy Pedigree

If neither an options dictionary nor a configuration file nameis provided,pyp_newclasses.loadPedigree()
will try and load the file named ‘pypedal.ini’.

3.5 Pedigree Files

Pedigree files consist of plain-text files (also known as ASCII or flatfiles) whose rows contain records on individual
animals and whose columns contain different variables. Thecolumns are delimited (separated from one another) by
some character such as a space or a tab (\t). Pedigree files may also contain comments (notes) about the pedigree that
are ignored by PyPedal; comments always begin with an octothorpe (#). For example, the following pedigree contains
records for 13 animals, and each record contains three variables (animal ID, sire ID, and dam ID):

This pedigree is taken from Boichard et al. (1997).
Each records contains an animal ID, a sire ID, and
a dam ID.
1 0 0
2 0 0
3 0 0
4 0 0
5 2 3
6 0 0
7 5 6
8 0 0
9 1 2
10 4 5
11 7 8
12 7 8
13 7 8

When this pedigree is processed by PyPedal the comments are ignored. If you need to change the default column
delimiter , which is a space (’ ’), set thesepcharoption to the desired value. For example, if your columns are
tab-delimited you would set the option as:

options[’sepchar’] = ’\t’

Options are discussed at length in section3.4. PyPedal also provides tools for pedigree simulation, which are discussed
in section3.8. More details about pedigree input may be found in Chapter4.

3.5.1 Pedigree Format Codes

Pedigree format codes consisting of a string of characters are used to describe the contents of a pedigree file. The
simplest pedigree file that can be read by PyPedal is shown above; the pedigree format for this file isasd. A pedigree

3.5. Pedigree Files 19

format is required for reading a pedigree; there is no default code used, and PyPedal wil halt with an error if you do
not specify one. You specify the format using an option statement at the start of your program:

options[’pedformat’] = ’asd’

Please note that the format codes are case-sensitive, whichmeans that ‘a’ is considered to be a different code than ‘A’.
The codes currently recognized by PyPedal are listed in Table3.2.

As noted, all pedigrees must contain columns correspondingto animals, sires, and dams, either in the ’asd’ or ’ASD’
formats (it is not recommended that you mix them such as in ’AsD’). Pedigree codes should be entered in the same
order in which the columns occur in the pedigee file. The character that separates alleles when the ’L’ format code
is used cannot be the same character used to separate columnsin the pedigree file. If you do use the same character,
PyPedal will write an error message to the log file and screen and halt. The herd column type simply refers to a
management group identifier, and can correspond to a herd, flock, litter, etc.

If you used an earlier version of PyPedal you may have added a pedigree format string, e.g."% asd", to your
pedigree file(s). You no longer need to include that string inyour pedigrees, and if PyPedal sees one while reading a
pedigree file it will ignore it.

Note that if your pedigree file uses strings for animal, sire,and dam IDs (the ASD pedigree format codes) you may
need to override themissing parentoption, which is ‘0’ by default. For example, the pedigree file shown in Figure??
usesanimal0to denote unknown parents. If ‘options[’missing_parent’] = ’animal0’’ is not set before
the pedigree file is loaded missing parents will be treated asanimals with unknown parents, rather than as unknown
parents.

Table 3.2: Pedigree format codes.

Code Description
a animal (’a’ or ’A’ REQUIRED)
s sire (’s’ or ’S’ REQUIRED)
d dam (’d’ or ’D’ REQUIRED)
y birthyear (YYYY)
e age
f coefficient of inbreeding
g generation
h herd
l alive (1) or dead (0)
n name
p Pattie’s (1965) generation coefficient
r breed
u user-defined field (string)
b birthdate in ”MMDDYYYY” format
x sex
continued on next page

20 Chapter 3. High-Level Overview

Code Description
A animal ID as a string (cannot contain ‘sepchar’)
S sire ID as a string (cannot contain ‘sepchar’)
D dam ID as a string (cannot contain ‘sepchar’)
H herd as a string (cannot contain ‘sepchar’)
L alleles (two alleles separated by a non-null character)
Z indicates a column that should be skipped (one allowed per pedigree)

3.6 Renumbering a Pedigree

Whenever you load a pedigree into PyPedal a list of offspringis attached to the record for each animal in the pedigree
file. If you renumber the pedigree at the time it is loaded, there is no problem. However, if you do not renumber a
pedigree at load time and choose to renumber it later in your session you must be careful. The API documentation
may lead you to believe that

example.pedigree = pyp_utils.renumber()

is the correct way to renumber the pedigree, but that is not correct. The pedigree should always be numbered as:

example.kw[’renumber’] = 1
example.renumber()

If you are seeing strange results when trying to cross-reference offspring to their parents check to make sure that you
have not incorrectly renumbered your pedigree.

3.6.1 Animal Identification

A detailed explanation of animal identification cross-references is provided in Section7.2.

3.7 Logging

PyPedal uses thelogging module that is part of the Python standard library to record events during pedigree pro-
cessing. Informative messages, as well as warnings and errors, are written to the logfile, which can be found in the
directory from which you ran PyPedal. An example of a log froma successful (error-free) run of a program is presented
below:

3.6. Renumbering a Pedigree 21

Fri, 06 May 2005 10:27:22 INFO Logfile boichard2.log instantiated.
Fri, 06 May 2005 10:27:22 INFO Preprocessing boichard2.ped
Fri, 06 May 2005 10:27:22 INFO Opening pedigree file
Fri, 06 May 2005 10:27:22 INFO Pedigree comment (line 1): # This pedigree is

taken from Boicherd et al. (1997).
Fri, 06 May 2005 10:27:22 INFO Pedigree comment (line 2): # It contains two

unrelated families.
Fri, 06 May 2005 10:27:22 WARNING Encountered deprecated pedigree format string

(% asdg) on line 3 of the pedigree file.
Fri, 06 May 2005 10:27:22 WARNING Reached end-of-line in boichard2.ped after reading

23 lines.
Fri, 06 May 2005 10:27:22 INFO Closing pedigree file
Fri, 06 May 2005 10:27:22 INFO Assigning offspring
Fri, 06 May 2005 10:27:22 INFO Creating pedigree metadata object
Fri, 06 May 2005 10:27:22 INFO Forming A-matrix from pedigree
Fri, 06 May 2005 10:27:22 INFO Formed A-matrix from pedigree

TheWARNINGs let you know when something unexpected or unusual has happened, although you might argue that
coming to the end of an input file is neither. If you get unexpected results from your program make sure that you check
the logfile for details – some subroutines return default values such as -999 when a problem occurs but do not halt
the program. Note that comments found in the pedigree file arewritten to the log, as are deprecated pedigree format
strings used by earlier versions of PyPedal. When an error from which PyPedal cannot recover occurs a message
is written to both the screen and the logfile. We can see from the following log that the number of columns in the
pedigree file did not match the number of columns in the pedigree format string.

Thu, 04 Aug 2005 15:36:18 INFO Logfile hartlandclark.log instantiated.
Thu, 04 Aug 2005 15:36:18 INFO Preprocessing hartlandclark.ped
Thu, 04 Aug 2005 15:36:18 INFO Opening pedigree file
Thu, 04 Aug 2005 15:36:18 INFO Pedigree comment (line 1): # Pedigree from van

Noordwijck and Scharloo (1981) as presented
Thu, 04 Aug 2005 15:36:18 INFO Pedigree comment (line 2): # in Hartl and Clark

(1989), p. 242.
Thu, 04 Aug 2005 15:36:18 ERROR The record on line 3 of file hartlandclark.ped

does not have the same number of columns (4) as
the pedigree format string (asd) says that it
should (3). Please check your pedigree file and
the pedigree format string for errors.

There is no sensible “best guess” that PyPedal can make abouthandling this situation, so it halts. There are some cases
where PyPedal does “guess” how it should proceed in the face of ambiguity, which is why it is always a good idea to
check forWARNINGs in your logfiles.

3.8 Simulating Pedigrees

PyPedal is capable of simulating pedigrees using am algorithm based on thePedigree::samplemethod in Matvec
1.1a (http://statistics.unl.edu/faculty/steve/software/matvec/), although the implementa-
tion in NewPedigree is all original code. A pedigree is simulated when thesimulate_pedigree flag is set,
and is the only case in which apedfile does not need to be provided to PyPedal. All simulated pedigrees have the
code ‘asdxg’ and arenot renumbered. The options used to control pedigree simulation are presented in Table3.1.

22 Chapter 3. High-Level Overview

http://statistics.unl.edu/faculty/steve/software/matvec/

Simulated Pedigree 0

7

6

12

3

11 13

8

4

14

2

9

10

1 5 15

Figure 3.1: Simulated pedigree using default options

The basic structure of a simulated pedigree is determined bythe total number of simulated animals (simulate_n),
founder sires (simulate_ns) and dams (simulate_nd), and the number of distinct generations in the pedigree
(simulate_g). Populations can be closed or open based on the value ofsimulate_ir; when the immigration
rate is> 0 that proportion of new animals will be immigrants with unknown parents. The sex ratio can be altered by
changingsimulate_sr; values< 0.5 will result in more females than males, and values> 0.5 will result in more
males than females. By default,NewPedigree.simulate produces a three-generation pedigree with 15 animals
descended from 4 founder sires and 4 founder dams (Figure3.1). simulate mp is a flag indicating whether or not
simulated animals may have missing parents. When missing parents are allowed, animals may have no, one, or both
parents unknown. The related parameter,simulate pmd, specifies the number of times parents should be sampled at
random when trying to satisfy all of the simulation constraints. If parents are sampledsimulate pmd times without
satisfying the rules in place, both parents are set to missing, even if missing parents are not permitted. Other constraints
include allowing/forbidding parent-offspring (simulate po) and/or full sib (simulate fs) matings.

3.8. Simulating Pedigrees 23

24

CHAPTER

FOUR

Input and Output

The only legitimate use of a computer is to play games. — Eugene Jarvis

4.1 Overview

Getting data into and out of programs, while extremely important to end-users, is often challenging. PyPedal is able
to load pedigrees from, and save them to, from a number of different sources. A list of supported input and output
methods may be found in Table4.1.

Table 4.1: PyPedal input and output methods.

Direction Source Description
Input db Load an ASDx-formatted data from an SQLite

database
fromgraph Load a pedigree from an instance of an XDiGraph ob-

ject (not a file)
gedcomfile Load a pedigree from a GEDCOM 5.5 file
graphfile Load a pedigree from an adjacency list using the

read adjlist() function from the NetworkX module
simulate Simulate a pedigree rathen that loading it from a file
textstream Load a pedigree from a string contaiing animal records

Output save Save a pedigree to a user-specified file
savedb Save a pedigree to a database table
savegedcom Save a pedigree to a GEDCOM 5.5 file
savegraph Save a pedigree to a file as an adjacency list

It has evolved over time that the input methods are implemented as cases of ‘pedsource’ in the
NewPedigree::load() method, while output methods are implemented as individualmethods of
NewPedigree. While it is quite straightforward to add new methods for pedigree output, it is trickier to add new
input sources. The greater difficulty in adding new input sources is largely attributable to the mysterious workings
of theNewPedigree::preprocess()method, which walks through input line-by-line to load the pedigree and
perform a number of integrity checks. Once the data are loaded into aNewPedigree object it is easy to output them
because there is no need to check the integrity of the pedigree and relationships among the records in the pedigree. If
you want to implement a new input source the sanity-saving way to go is to get the data into a list that you can pass to
preprocess(); preprocess() can then walk the list as it would walk through the lines of an input file.

25

4.2 Input

The process of data input hsa been made as simple as is reasonably possible, but it is ultimately the responsibility of
the user to prepare their data. Most people will load their data from a simple text file, with one pedigree entry per
line. A number of pedigree integrity checks are performed when the data are loaded. First, the pedigree format string
(Section3.5.1) is checked for validity and compared to a line of data to makesure that the specfied number of colums
of data exist. Once that check is passed individual records are loaded and checked one at a time. As individual records
are vvalidated they are added to the pedigree. Duplicate records are eliminated, parents that appear in the pedigree but
do not have their own record in the inpur data are added to the pedigree, and sexes are checked (animals cannot appear
as both sires and dams). If animal IDs are strings they are hashed to get numeric IDs for use in pedigree reordering
and renumbering.

If you used an earlier version of PyPedal you may have added a pedigree format string to your pedigree file. You do
not need to include that string in the current version of PyPedal, and ifpreprocess() sees one while reading a
pedigree file it will ignore it. You may include comment linesin your file as well; they will also be ignored.

4.2.1 Databases

PyPedal can load ASDx-formatted pedigrees from an SQLite database using ‘pedsource=’db’’. The pedigree
will be loaded from the database and table specified in thedatabasenameanddbtable namevariables. Consider the
following example:

test = pyp_newclasses.loadPedigree(options,pedsource=’db’)
test.metadata.printme()

This produces the output:

Metadata for DB Stream ()
Records: 7
Unique Sires: 3
Unique Dams: 3
Unique Gens: 1
Unique Years: 1
Unique Founders: 4
Unique Herds: 1
Pedigree Code: ASDx

Note that user-supplied values of the pedigree format string will be over-written by theload() method and do not
affect database processing. Database importation is hard-coded to accept only pedigrees in that format.

4.2.2 Graph Objects

Pedigrees can be represented as a type of mathematical object called a directed graph (digraph; not to be confused
with visualizations of data). TheNetworkX module provides Python tools for working with digraphs, andPyPedal
provides a convenient way for loading a pedigree from an instance of anXDiGraph object.

26 Chapter 4. Input and Output

example = pyp_newclasses.loadPedigree(optionsfile=’new_networkx.ini’)
ng = pyp_network.ped_to_graph(example)
options = {}
options[’pedfile’] = ’dummy’
options[’pedformat’] = ’asd’
example2 = pyp_newclasses.loadPedigree(options,pedsource=’graph’,pedgraph=ng)
example2.metadata.printme()

You can see from the printout of the metadata from the new pedigree, ‘example2’, that the graph ‘ng’ was success-
fully converted to aNewPedigree object.

Metadata for Testing fromgraph() (dummy)
Records: 13
Unique Sires: 3
Unique Dams: 4
Unique Gens: 1
Unique Years: 1
Unique Founders: 5
Unique Herds: 1
Pedigree Code: asd

When considering the utility of such tools it might be helpful to recall that PyPedal was written by and for use in
scientific research. Perhaps that will allow the author to beforgiven a multitude of sins.

4.2.3 GEDCOM Files

A thorough description of support for GEDCOM files may be found in AppendixB.

4.2.4 Text Files

Most users will load their pedigrees from simple text files. As an example, consider a large dog pedigree, an excerpt
of which is presented below.

dogID,fatherID,motherID,gender,born
64 66 67 2 1979
63 64 65 1 1982
62 191 195 2 1982
61 64 65 2 1982
...

This pedigree can be loaded using this short program:

4.2. Input 27

options = {}
options[’pedfile’] = ’dog.ped’
options[’pedname’] = ’A Large Dog Pedigree’
options[’pedformat’] = ’asdgb’
if __name__ == ’__main__’:

test = pyp_newclasses.loadPedigree(options)

There are numerous examples of loading pedigrees from text files throughout this manual.

4.2.5 Text Streams

There are some use cases, such as web services, for which it may be desirable to load pedigrees from strings rather
than from files. This is done by passing thepedsource keyword topyp_newclasses.loadPedigreewith a
value of ‘textstream’, along with a string named ‘pedstream’:

options = {}
options[’pedfile’] = ’’
options[’messages’] = ’verbose’
options[’pedformat’] = ’ASD’

if __name__ == "__main__":
pedstream = ’a1,s1,d1\na2,s2,d2\na3,a1,a2\n’
test = pyp_newclasses.loadPedigree(options,pedsource=’textstream’,pedstream=pedstream)

Only ASD-formatted pedigrees can be loaded this way, individual IDs are separated with commas, and successive
records are separated by newlines. These restrictions are hard-coded into theNewPedigree::load() method.
All records must contain a newline, including the last record in the string! You must also set the ‘pedfile’ option to
some value, even if that value is just an empty string as in theexample.

The expected use case is that the pedigree would be retrievedfrom a database, and the result set from the SQL query
converted into a string. There is an upper bound on the size ofpedigree that can be loaded from a stream based on the
physical memory available on your platform, and extremely large pedigrees should be loaded from a text file.

4.3 Output

4.3.1 Databases

PyPedal can write NewPedigree pedigrees to ASDx-formatted SQLite tables using the
NewPedigree::savedb() method. The following program will result in the creation ofa table named
‘test_save’ in the database ‘test_pypedal_save’.

test.kw[’database_name’] = ’test_pypedal_save’
test.kw[’dbtable_name’] = ’test_save’
test.savedb()

The pedigree is saved to the database and table specified in the databasenameanddbtable namevariables. If the
specified table already exists it will be dropped and a new table created. This can result in data loss! Please be careful.

28 Chapter 4. Input and Output

4.3.2 GEDCOM Files

A thorough description of GEDCOM file exportation may be found in AppendixB.

4.3.3 Graph Objects

The NewPedigree::savegraph() save a pedigree to a file as an adjacency list, which is a commonly-used
format for describing digraphs. If the pedigree has alreadybeen converted to a digraph pass it using thepedgraph
argument; otherwise, the method will call the appropriate converter:

test.savegraph(pedoutfile=’test.adj’)

The file ‘test.adj’ has the following comments:

sqlite.py
GMT Tue Mar 4 20:38:52 2008
Text Stream
1 5
2 6
3 5
4 6
5 7
6 7
7

This example demonstrates that there can be a considerable loss of information when going from a PyPedal pedigree
to some other way of representing the pedigree, such as a graph.

4.3.4 Text Files

TheNewPedigree::save()method writes a PyPedal pedigree to a user-specified file witheither the format spec-
ified in the pedigree format string (default) or a format including all variables in the pedigree (‘outformat=’l’’).
Either the original (default) or renumbered (‘idformat=’r’’) IDs can be used for animal, sire, and dam IDs. In the
following example all variables are written to a file named ‘all_data.ped’ using the same IDs as in the original
file:

test.save(filename=’all_data.ped’,outformat=’l’,idformat=’o’)

NewPedigree::save() tries never to overwrite your data. If you do not pass a filename argument a file whose
name is derived from, but not the same as, the original pedigree filename will be used. The string ‘_saved’ will be
appended to the filename in order to distinguish it from the original pedigree file.

4.3.5 Text Streams

NewPedigree::tostream() returns a text stream from an instance of aNewPedigree object. The text stream
contains an ASD-formatted pedigree as a string in which individual IDs are separated by commas and successive
records are separated by newlines.

4.3. Output 29

>>> pedstream = ’a1,s1,d1\na2,s2,d2\na3,a1,a2\n’
>>> test = pyp_newclasses.loadPedigree(options,pedsource=’textstream’,pedstream=pedstream)
>>> pedstream2 = test.tostream()
>>> print pedstream2
’d1,0,0\nd2,0,0\ns1,0,0\ns2,0,0\na2,s2,d2\na1,s1,d1\na3,a1,a2\n’

Note that in this example the input and output text streams differ because the input stream did not include pedigree
entries for all animals in the pedigree (for example, sire ‘s1’). Recall that PyPedal adds missing entries for parents
when the pedigree is loaded.

30 Chapter 4. Input and Output

CHAPTER

FIVE

Working with Pedigrees

Are you quite sure that all those bells and whistles, all those wonderful facilities of your so called powerful
programming languages, belong to the solution set rather than the problem set? — Edsger Dijkstra

5.1 Overview

In Chapter4 tou learned how to get your pedigree data loaded into PyPedal. This chapter will show you what you can
do with the pedigree once it is loaded. The examples in this chapter assumes that you are working with a reordered
and renumbered pedigree (see Section7.1for additional details).

In order to get the most out of your pedigrees you need to understand the basic structure of a PyPedal pedigree, which
consists of two components: the pedigree itself, which is composed of a list ofNewAnimal objects, and metadata,
which is data about the animals contained in the pedigree. Some calculations are performed on the animal records
directly, while others use the metadata, or some combination of the two. The fundamental goal of PyPedal is to provide
the user with tools for asking questions about their pedigrees.

The following discussion will use the following pedigree taken from Boichard et al. (1997):

pedformat: asdg
1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1
5 1 2 2
6 3 4 2
7 5 6 3
8 5 6 3
9 5 6 3
10 5 6 3
11 5 6 3
12 5 6 3
13 5 6 3
14 5 6 3

Many of the subsequent code snippets are taken from the ‘new_methods.py’ example program (see: AppendixA).

31

5.2 Inbreeding and Relationships

inbr = pyp_nrm.inbreeding(example)
print ’inbr: ’,
>>> inbr: {

’fx’: {1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0, 6: 0.0, 7: 0.0,
8: 0.0, 9: 0.0, 10: 0.0, 11: 0.0, 12: 0.0, 13: 0.0, 14: 0.0},

’metadata’: {
’nonzero’: {’f_max’: 0.0, ’f_avg’: 0.0, ’f_rng’: 0.0,

’f_sum’: 0.0, ’f_min’: 0.0, ’f_count’: 0},
’all’: {’f_max’: 0.0, ’f_avg’: 0.0, ’f_rng’: 0.0, ’f_sum’: 0.0,

’f_min’: 0.0, ’f_count’: 14}
}

}

The

dictionary returned byinbreeding() contains two dictionaries: ‘fx’ contains coefficients of inbreeding keyes
to animal IDs, and ‘metadata’ contains summary information about the coefficients of inbreeding in the pedigree.
‘metadata’ also contains two dictionaries: ‘nonzero’ contains summary statostics only for animals with non-zero
coefficients of inbreeding, and ‘all’ contains statistics for all animals.

Relationship metadata, similar to the inbreeding metadatadescribed above but for coefficients of relationship, are
available but not calculated by default.

inbr,reln = pyp_nrm.inbreeding(example,rels=1)
print ’reln: ’, reln
>>> reln: {’r_nonzero_count’: 10, ’r_nonzero_avg’: 0.40000000000000002,

’r_min’: 0.25, ’r_sum’: 4.0, ’r_avg’: 0.19047619047619047, ’r_max’: 0.5,
’r_count’: 21, ’r_rng’: 0.25}

The dictionary of relationship metadata returned byinbreeding() also contains statistics for zero and non-zero
coefficients of relationship. On the example presented above the pedigree contains

Relationship metadata are not guaranteed to be correct when‘method = ’vanraden’’ is used. This is because
inbreeding_vanraden()uses a speed-up when there are full-sibs in the pedigree to avoid repeating calculations.
The metadata should be reasonably accurate for pedigrees with few or no full-sibs. The summary statistics will not be
very accurate in the case of pedigrees that contain lots of full-sibs.

The relationship metadata do not include individual pairwise relationships. In order to associate those with your
pedigree you must create aNewAMatrix object, form the numerator relationship matrix (NRM), and attach it to the
pedigree:

options = {}
...
example = pyp_newclasses.loadPedigree(options)
example.nrm = pyp_newclasses.NewAMatrix(example.kw)
example.nrm.form_a_matrix(example.pedigree)

If you know when you load the pedigree file that you want to calculate and store the NRM you can save a little typing
by setting the ‘form_nrm’ option:

32 Chapter 5. Working with Pedigrees

options = {}
options[’form_nrm’] = 1
...
example = pyp_newclasses.loadPedigree(options)

If you want to inspect the NRM you can use ‘example.nrm.printme()’ to print the matrix to the screen, which
is probably not a particularly good idea for large matrices.

[[1. 0. 0. 0. 0.5 0. 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25]
[0. 1. 0. 0. 0.5 0. 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25]
[0. 0. 1. 0. 0. 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25]
[0. 0. 0. 1. 0. 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25]
[0.5 0.5 0. 0. 1. 0. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]
[0. 0. 0.5 0.5 0. 1. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]
[0.25 0.25 0.25 0.25 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0.5 0.5]
[0.25 0.25 0.25 0.25 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0.5]
[0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5]
[0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5]
[0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5]
[0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5]
[0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5]
[0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.]]

If you want to get the pairwise relationship between two animals you need to use their renumbered IDs and subtract 1
(because the array is zero-indexed). For example, if you wanted the coeffient of relationship between animals 2 and 5
(an individual and its sire) you would use the indices ‘1’ and ‘4’:

print example.nrm.nrm[1][4]
>>> 0.5

The NRM is symmetric, which means that ‘nrm[1][4]’ and ‘nrm[4][1]’ are identical.

print example.nrm.nrm[1][4]
>>> 0.5
print example.nrm.nrm[5][1]
>>> 0.5

You can also easily save the NRM to a file for future reference:

example.nrm.save(’Amatrix.txt’)

If you’re from Missouri you can verify that the contents of ‘Amatrix.txt’ are:

5.2. Inbreeding and Relationships 33

1.0 0.0 0.0 0.0 0.5 0.0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.0 1.0 0.0 0.0 0.5 0.0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.0 0.0 1.0 0.0 0.0 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.0 0.0 0.0 1.0 0.0 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.5 0.5 0.0 0.0 1.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.0 0.0 0.5 0.5 0.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5
0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5
0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5
0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0

Information on the endianess and precision of the data in thearray are lost, so this is not a good way to archive data or
move data between machines with different endianess. The data are always written in C (row major) order. For better
performance you can set the ‘nrm_format’ option to ‘binary’, which will use a binary file formt.

Finally, if you’re going to work on the exact same pedigree later you can load ‘Amatrix.txt’ and avoid having to
recalculate the NRM entirely:

example.nrm2 = pyp_newclasses.NewAMatrix(example.kw)
example.nrm2.load(’Amatrix.txt’)
example.nrm2.printme()

Since we’ve loaded ‘Amatrix.txt’ into a second NRM (‘nrm2’) attached to our pedigree it’s straightforward, if
tedious, to verify that the two NRM contain the same values.

5.3 Matings

There are a number of questions you might wish to ask that involve matings, such as, “What is the minimum-inbreeding
mating among this set of individuals?”. Several routines inpyp_metrics.

Suppose you were considering a mating between animals 5 (index 4) and 14 (index 13), which is a sire-daughter
mating. How would you go about this? You simply callpyp_metrics.mating_coi():

print ’\tCalling mating_coi() at %s’ % (pyp_nice_time())
f = pyp_metrics.mating_coi(example.pedigree[4].animalID,

example.pedigree[13].animalID,example,1)
print f

which produces the output:

Calling mating_coi() at Wed Mar 5 11:31:30 2008
0.25

We don’t need PyPedal to tell us the coefficient of inbreedingof such a simple mating, but the calculations can
be complex for more complicated cases. While you can do all ofthe necessary computations “by hand”,pyp_-

34 Chapter 5. Working with Pedigrees

metrics.mating_coi() takes care of that for you by adding a new dummy animal to the pedigree with the
proposed parents, calculating the coefficient of inbreeding of that mating, deleting the dummy animal from the pedi-
gree, and returning the coefficient of inbreeding.

PyPedal takes things one step further, allowing you to work with groups of proposed matings at one time usingpyp_-
metrics.mating_coi_group(). Internally it works similarly topyp_metrics.mating_coi(), although
instead of passing a pair of parents you pass a list of proposed matings. The matings are of the form ‘<parent1>_-
<parent2>’. Here’s an example in which we are going to consider the following three matings: 1 with 5, 1 with 14,
and 5 with 14. Note how the matings are formed and appended to the ‘matings’ list in one step.

matings = []
matings.append(’%s_%s’%(example.pedigree[0].animalID, example.pedigree[4].animalID))
matings.append(’%s_%s’%(example.pedigree[0].animalID, example.pedigree[13].animalID))
matings.append(’%s_%s’%(example.pedigree[4].animalID, example.pedigree[13].animalID))
fgrp = pyp_metrics.mating_coi_group(matings,example)
print ’fgrp: ’, fgrp[’matings’]

That code produces a list of the proposed matings with associated coefficients of inbreeding. In addition to the
‘matings’ dictionary, the ‘fgrp’ dictionary also contains a dictionary named ‘metadata’ which contains sum-
mary statistics about the proposed matings.

fgrp: {’1_5’: 0.25, ’5_14’: 0.25, ’1_14’: 0.125}

5.4 Relatives

PyPedal provides a number of tools for extracting information about relatives from a pedigree. Examples include:
obtaining lists of the ancestors of an animal, getting listsof ancestors shared in common by a pair of animals, listing
the descendants of an individual, the calculation of the additive genetic relationship between a given pair of animals,
and the creation of “subpedigrees” containing only specified animals.

It is easy to obtain a list of an animal’s relatives usingpyp_metrics.related_animals():

list_a = pyp_metrics.related_animals(example.pedigree[6].animalID,example)
list_b = pyp_metrics.related_animals(example.pedigree[13].animalID,example)

produces a list of each animal’s relatives:

[5, 1, 2]
[14, 5, 1, 2, 6, 3, 4]

pyp_metrics.common_ancestors() is used to get a list of the common ancestors of two animals, say animals
‘5’ and ‘14’ (remember that this pedigree is renumbered, and that Python lists are indexed from 0, so we need to
offset the animal IDs by 1 to get the correct animal IDs).

5.4. Relatives 35

list_r = pyp_metrics.common_ancestors(example.pedigree[4].animalID,example.pedigree[13].ani
malID,example)
print list_r

Results are returned as lists:

[1, 2, 5]

If you’ve already obtained ancestor lists for a given pair ofanimals in which you’re interested you can also obtain a
list of common ancestors using Python sets, which avoids performing calcualtions more than needed:

>>> set_a = set(list_a)
>>> set_b = set(list_b)
>>> set_c = set_a.intersection(set_b)
>>> set_c
set([1, 2, 5])
>>> list_c = list(set_c)
>>> list_c
[1, 2, 5]

A list of descendants can be obtained by callingpyp_metrics.descendants(), which returns a dictionary:

>>> pyp_metrics.descendants(5,example,{})
{7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14}

However, it is improtant to note that you will not get the answer you expect unless you have either set the option
‘set_offspring = 1’ or calledpyp_utils.assign_offspring() after loading the pedigree. There is
also a convenience function,pyp_metrics.founder_descendants(), for handling the special case of ob-
taining descendants of all of the founders in the pedigree:

>>> pyp_metrics.founder_descendants(example)
{1: {5: 5, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14},
2: {5: 5, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14},
3: {6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14},
4: {6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14}}

36 Chapter 5. Working with Pedigrees

CHAPTER

SIX

Using PyPedal Objects

In every chaotic behaviour, there lies a pattern. — Jean Jacques Rousseau

In this chapter, a detailed explanation of each PyPedal class is presented, including attributes and methods.

6.1 Animal Objects

Three types of animal object are provided in PyPedal (6.1.1). Users will typically work with instances ofNewAnimal
objects, whileLightAnimal (6.1.2) andSimAnimal (6.1.3) objects are of interest primarily to developers. De-
tailed descriptions of each class and class method may be found in the API Reference for thepyp_newclasses
module (Section??).

6.1.1 The NewAnimal Class

Table 6.1: Attributes ofNewAnimal objects.

37

Attribute
Default

Description
Integral IDs (’asd’) String IDs (’ASD’)

age -999 -999 The animal’s age based on the global
BASE_DEMOGRAPHIC_YEAR defined in
pyp_demog. If the by is unknown, the in-
ferred generation is used. If the inferred gen-
eration is unknown, the age is set to -999.

alive ’0’ ’0’ Flag indicating whether or not the animal is
alive: ’0’ = dead,’1’ = alive.

alleles [′′,′′] [′′,′′] Alleles used for gene dropping.
ancestor ’0’ ’0’ Flag indicating whether or not the animal

has offspring:’0’ = has no offspring,’1’
= has offspring. The flags are set by calling
pyp_utils.set_ancestor_flag()
and passing it a renumbred pedigree.

animalID animal ID animal ID 7→ integer Animal’s ID. Animal IDs change when a
pedigree is renumbered. IDs must be pro-
vided for all animals in a pedigree file. When
strings are provided for animal IDs using the
ASD pedigree format code they are converted
to integral animal IDs using thestring_-
to_int() method.

bd missing_bdate missing_bdate The animal’s birthdate inMMDDYYformat.
breed missing_breed missing_breed The animal’s breed as a string.
by missing_byear missing_byear The animal’s birthyear inYYYYformat. De-

fault values set inthis typeface are
PyPedal options which are described in detail
in Section3.4.

damID dam ID dam ID 7→ integer Dam’s ID. When strings are provided for an-
imal IDs using theASD pedigree format code
they are converted to integral animal IDs us-
ing thestring_to_int()method.

damName dam ID dam ID The name of the animal’s dam.
daus {} {} Dictionary containing all known daughters of

an animal. The keys and values are the animal
IDs for each offspring. When the pedigree is
renumbered, keys are updated to correspond
to the renumbered IDs for each offspring.

continued on next page

38 Chapter 6. Using PyPedal Objects

Attribute
Default

Description
Integral IDs (’asd’) String IDs (’ASD’)

fa 0.0 0.0 The animal’s coefficient of inbreeding.
founder ’n’ ’n’ Character indicating whether or not the ani-

mal is a founder (had unknown parents):’n’
= not a founder (one or both parents known),
’y’ = founder (parents unknown).

gen -999 -999 Generation to which the animal belongs.
gencoeff -999.0 -999.0 Pattie’s (1965) generation coefficient.
herd missing_herd 7→ integer missing_herd 7→ integer The ID of the herd to which the animal be-

longs.
igen -999 -999 Generation inferred by pyp_-

utils.set_generation().
name animal ID animal ID The animal’s name. This attribute is quite

useful inASD pedigrees. and less so inasd
pedigrees.

originalHerd herd herd The original herd ID to which an animal be-
longed before the herd was converted from a
string to an integer; most useful with the’H’
pedigree format code.

originalID animalID animal ID 7→ integer Original ID assigned to an animal. It will not
change when the pedigree is renumbered.

paddedID animalID 7→ integer animalID 7→ integer The animal ID padded to fifteen digits, with
the birthyear (or 1950 if the birth year is un-
known) prepended. The order of elements
is: birthyear, animalID,count of zeros, zeros.
Used to create alleles for gene dropping.

pedcomp -999.9 -999.9 Pedigree completeness as described in Sec-
tion 7.4.8.

renumberedID -999 -999 ID assigned to an animal when the pedigree is
renumbered. The default value indicates that
the pedigree has not been renumbered using
PyPedal.

sex ’u’ ’u’ The sex of the animal:’m’ = male,’f’ =
female,’u’ = unknown/not provided.

sireID sire ID sire ID 7→ integer Sire’s ID. When strings are provided for ani-
mal IDs using theASD pedigree format code
they are converted to integral animal IDs us-
ing thestring_to_int()method.

sireName sireID sireID The name of the animal’s sire.
sons {} {} Dictionary containing all known sons of an

animal. The keys and values are the animal
IDs for each offspring. When the pedigree is
renumbered, keys are updated to correspond
to the renumbered IDs for each offspring.

continued on next page

6.1. Animal Objects 39

Attribute
Default

Description
Integral IDs (’asd’) String IDs (’ASD’)

unks {} {} Dictionary containing all offspring of an ani-
mal with unknown sex. The keys and values
are the animal IDs for each offspring. When
the pedigree is renumbered, keys are updated
to correspond to the renumbered IDs for each
offspring.

NewAnimal objects have the seven methods listed in Table6.2. The methods focus on returning information about
an instance of an object; calculations are left to functionsin, e.g., thepyp_metrics andpyp_nrm modules.

Table 6.2: Methods ofNewAnimal objects.

Method Description
init Initializes a NewAnimal object and returns an instance of a

NewAnimal object.
printme Prints a summary of the data stored in aNewAnimal object.
stringme Returns the data stored in aNewtAnimal object as a string.
dictme Returns the data stored in aNewtAnimal object as a dictionary whose

keys are attribute names and whose values are attribute values.
trap Checks for common errors inNewtAnimal objects.
pad id Takes an animal ID, pads it to fifteen digits, and prepends thebirthyear.

The order of elements is: birthyear, animalID, count of zeros, zeros. The
padded ID is used for reordering the pedigree with thefast_reorder
routine.

string to int Takes an animal ID as a string and returns a hash. The algorithm used is
taken from ”Character String Keys” in ”Data Structures and Algorithms
with Object-Oriented Design Patterns in Python” by Bruno R.Preiss:
http://www.brpreiss.com/books/opus7/html/page220.html#progstrnga.

6.1.2 The LightAnimal Class

The LightAnimal class holds animals records read from a pedigree file. It implements a much simpler object
than theNewAnimal object and is intended for use with the graph theoretic routines inpyp_network. The only
attributes of these objects are animal ID, sire ID, dam ID, original ID, renumbered ID, birth year, and sex (Table6.3).

Table 6.3: Attributes ofLightAnimal objects.

Attribute Default Description
animalID animal ID Animal’s ID.
by missing_byear The animal’s birthyear inYYYYformat.
damID 0 Dam’s ID.
continued on next page

40 Chapter 6. Using PyPedal Objects

http://www.brpreiss.com/books/opus7/html/page220.html#progstrnga

Attribute Default Description
originalID animalID Original ID assigned to an animal. It will not change when thepedigree

is renumbered.
renumberedID animalID Renumbered ID assigned to an animal. It is assigned by the renumbering

routine.
sex ’u’ The sex of the animal:’m’ = male,’f’ = female,’u’ = unknown.
sireID 0 Sire’s ID.

LightAnimal objects have the same seven methods (Table6.4) asNewAnimal objects (Table6.2).

Table 6.4: Methods ofLightAnimal objects.

Method Description
init Initializes a LightAnimal object and returns an instance of a

LightAnimal object.
printme Prints a summary of the data stored in aLightAnimal object.
stringme Returns the data stored in aLightAnimal object as a string.
dictme Returns the data stored in aLightAnimal object as a dictionary whose

keys are attribute names and whose values are attribute values.
trap Checks for common errors inLightAnimal objects.
pad id Takes an animal ID, pads it to fifteen digits, and prepends thebirthyear.

The order of elements is: birthyear, animalID, count of zeros, zeros. The
padded ID is used for reordering the pedigree with thefast_reorder
routine.

string to int Takes an animal ID as a string and returns a hash. The algorithm used is
taken from ”Character String Keys” in ”Data Structures and Algorithms
with Object-Oriented Design Patterns in Python” by Bruno R.Preiss:
http://www.brpreiss.com/books/opus7/html/page220.html#progstrnga.

6.1.3 The SimAnimal Class

TheSimAnimal class is used for pedigree simulation, which is described inSection3.8. All simulated pedigrees
have the format codeasdxg, and those are the only class attributes (Table6.5). This class is intended for use only
by the pedigree simulation routines, so the lack of attributes and methods as compared to theNewAnimal class is a
deliberate design decision.

Table 6.5: Attributes ofSimAnimal objects.

Attribute Default Description
animalID animal ID Animal’s ID.
damID 0 Dam’s ID.
gen 0 Generation to which the animal belongs.
sex ’u’ The sex of the animal:’m’ = male,’f’ = female,’u’ = unknown.
continued on next page

6.1. Animal Objects 41

http://www.brpreiss.com/books/opus7/html/page220.html#progstrnga

Attribute Default Description
sireID 0 Sire’s ID.

SimAnimal objects have only three methods (Table6.6).

Table 6.6: Methods ofSimAnimal objects.

Method Description
init Initializes a SimAnimal object and returns an instance of a

SimAnimal object.
printme Prints a summary of the data stored in aSimAnimal object.
stringme Returns the data stored in aSimAnimal object as a string.

6.2 The NewPedigree Class

TheNewPedigree class is the fundamental object in PyPedal.

Table 6.7: Attributes ofNewPedigree objects.

Attribute Default Description
kw kw Keyword dictionary.
pedigree [] A list of NewAnimal objects.
metadata {} A PedigreeMetadata object.
idmap {} Dictionary for mapping original IDs to renumbered IDs (7.2).
backmap {} Dictionary for mapping renumbered IDs to original IDs (7.2).
namemap {} Dictionary for mapping names to original IDs (7.2).
namebackmap {} Dictionary for mapping original IDs to names (7.2).
starline ’*’*80 Convenience string.
nrm None An instance of aNewAMatrix object.

The methods ofNewPedigree objects are listed in Table6.8. !!!I need to put something in here about pedsources
and make sure that it’s in the index!!!

Table 6.8: Methods ofNewPedigree objects.

Method Description
init Initializes and returns aNewPedigree object.

addanimal Adds a new animal of classNewAnimal to the pedigree.Note: This
function should be used byNewPedigreemethods only, not userspace
routines. Improper use ofaddanimal may result in data loss or cor-
ruption. You have been warned.

continued on next page

42 Chapter 6. Using PyPedal Objects

Method Description
delanimal Deletes an animal from the pedigree. Note that this method DOES

not update the metadata attached to the pedigree and should only be
used if that is not important.Note: This function should be used by
NewPedigree methods only, not userspace routines. Improper use
of delanimal may result in data loss or corruption. You have been
warned.

fromgraph Creates aNewPedigree from anXDiGraph objject.
load Wraps several processes useful for loading and preparing a pedigree for

use in an analysis, including reading the animals into a listof animal
objects, forming metadata, checking for common errors, setting ancestor
and sex flags, and renumbering the pedigree.

preprocess Processes the entries in a pedigree file, which includes reading each en-
try, checking it for common errors, and instantiating aNewAnimal ob-
ject.

printoptions Prints the contents of the options dictionary, which is useful for debug-
ging.

renumber Calls the proper reordering and renumbering routines; updates the ID
map after a pedigree has been renumbered so that all references are to
renumbered rather than original IDs.

save Writes a PyPedal pedigree to a user-specified file. The saved pedigree
includes all fields recognized by PyPedal, not just the original fields read
from the input pedigree file.

simulate Simulate simulates an arbitrary pedigree of sizen with g generations
starting from n s base sires andn d base dams. This method is
based on the concepts and algorithms in thePedigree::sample
method from Matvec 1.1a (src/classes/pedigree.cpp;
http://statistics.unl.edu/faculty/steve/software/matvec/),
although all of the code in this implementation was written from scratch.

updateidmap Updates the ID map after a pedigree has been renumbered so that all
references are to renumbered rather than original IDs.

See Section3.8for details on pedigree simulation.

6.3 The PedigreeMetadata Class

ThePedigreeMetadata class stores metadata about pedigrees. This helps improve performance in some proce-
dures, and also makes it easy to access useful summary data. Metadata are collected when the pedigree is loaded and
accessed by many PyPedal routines.

Table 6.9: Attributes ofPedigreeMetadata objects.

Attribute Default Description
continued on next page

6.3. The PedigreeMetadata Class 43

http://statistics.unl.edu/faculty/steve/software/matvec/

Attribute Default Description
name pedname Name assigned to the pedigree.
filename pedfile File from which the pedigree was loaded.
pedcode pedformat Pedigree format string.
num records 0 Number of records in the pedigree.
num unique sires 0 Number of unique sires in the pedigree.
num unique dams 0 Number of unique dams in the pedigree.
num unique founders 0 Number of unique founders in the pedigree.
num unique gens 0 Number of unique generations in the pedigree.
num unique years 0 Number of unique birth years in the pedigree.
num unique herds 0 Number of unique herds in the pedigree.
unique sire list [] List of the unique sires in the pedigree.
unique dam list [] List of the unique dams in the pedigree.
unique founder list [] List of the unique founders in the pedigree.
unique gen list [] List of the unique generations in the pedigree.
unique year list [] List of the unique birth years in the pedigree.
unique herd list [] List of the unique herds in the pedigree.

Metadata are gathered furing the pedigree loading process,but after load-time renumbering has occured (if requested).
When a pedigree is renumbered after it has been loaded the unique sire, dam, and founders lists are not updated to
contain the renumbere IDs. The metadata may be updated by instantiating a newPedigreeMetadata object and
using it to replace the original metadata:

example.metadata = PedigreeMetadata(example.pedigree,example.kw)

Alternatively, ID maps (Section7.2) may be used to produce expected lists of animals.

The methods ofPedigreeMetadata objects are listed in Table6.10. The couting methods (nud, nuf, etc.) return
two values each, a count and a list, and new couting methods may easily be added.

Table 6.10: Methods ofPedigreeMetadata objects.

Method Description
init Initializes and returns aPedigreeMetadata object.

fileme Writes the metada stored in thePedigreeMetadata object to disc.
nud Returns the number of unique dams in the pedigree along with alist of

the dams.
nuf Returns the number of unique founders in the pedigree along with a list

of the founders.
nug Returns the number of unique generations in the pedigree along with a

list of the generations.
nuherds Returns the number of unique herds in the pedigree along witha list of

the herds.
continued on next page

44 Chapter 6. Using PyPedal Objects

Method Description
nus Returns the number of unique sires in the pedigree along witha list of

the sires.
nuy Returns the number of unique birth years in the pedigree along with a list

of the birth years.
printme Prints a summary of the pedigree metadata stored in the

PedigreeMetadata object.
stringme Returns a summary of the pedigree metadata stored in the

PedigreeMetadata object as a string.

6.4 The NewAMatrix Class

TheNewAMatrix class provides an instance of a numerator relationship matrix as a NumPy array of floats with some
convenience methods. The idea here is to provide a wrapper around a NRM so that it is easier to work with. For large
pedigrees it can take a long time to compute the elements of A,so there is real value in providing an easy way to save
and retrieve a NRM once it has been formed.

Table 6.11: Attributes ofNewAMatrix objects.

Attribute Default Description
kw kw Keyword dictionary.
nrm None A numerator relationship matrix; exists only after theform_a_matrix

method has been called.

The methods ofNewAMatrix objects are listed in Table6.12.

Table 6.12: Methods ofNewAMatrix objects.

Method Description
init Initializes and returns aNewAMatrix object.

form a matrix Calls pyp_nrm.fast_a_matrix() or pyp_nrm.fast_a_-
matrix_r() to form a NRM from a pedigree.

info Uses the NRM’sinfo() method to dump some information about the
NRM. This is useful for debugging.

load Uses the NumPy functionfromfile to load an array from a binary file.
If the load is successful, self.nrm contains the matrix.

save Uses the NRM’stofile() method to save an array to either a text or
binary file.

printme Prints the NRM to the screen.

6.4. The NewAMatrix Class 45

46

CHAPTER

SEVEN

Methodology

To iterate is human, to recurse divine. — L. Peter Deutsch

In this chapter, a high-level overview of PyPedal is provided, giving the reader the definitions of the key components
of the system. This section defines the concepts used by the remaining sections.

7.1 Reordering and Renumbering

Many computations on pedigrees require that the pedigree berenumbered such that animal IDs are consecutive from 1
to ‘n’, where ‘n’ is the total number of animalsin the pedigree. The renumbering process requires that the pedigree be
reordered such that parents always precede their offspringin the list of animal IDs. The actual ID assigned to an animal
is of no particular importance, and it is even possible for parents to have larger IDs than their ofspring. PyPedal can
reorder any pedigree unless there is an error in it that wouldprevent unambiguously placing parents before offspring.
For example, a pedigree containing a keypunch error such that an animal is one of its own grandparents cannot be
reordered because there is no way to unambiguously order theanimals. Thepyp_utils module provides two
routines for pedigree reordering,reorder() andfast_reorder(). By default,reorder() is used to reorder
pedigrees in place. It does this by maintaining a list of animal IDs that have been processed; whenever a parent that is
not in the list of encountered animals the offspring of that parent are moved to the end of the pedigree. This ensures
the pedigree is properly sorted such that all parents precede their offspring. Founders are also grouped together at the
beginning of the pedigree. This procedure will always correctly reorder a pedigree but it can be quite inefficient as it is
similar to an insertion sort, which has a worst-case runtimeproportional ton2 (Cormen, Leiserson, Rivest, and Stein
2003).

fast_reorder() provides a much faster means of reordering a pedigree, but can incorrectly reorder a pedigree
in some cases. When an instance of aNewAnimal object is created thepad_id() method is called.pad_id()
uses the animal ID and birth year to form an ID used byby pyp_utils/fast_reorder() for quick sorting;
if your pedigree file is numbered such that offspring always have larger IDs than their parents and your birth years
(if provided) are correct (that is, parents always born BEFORE offspring) thenpyp_utils.fast_reorder()
works as expected. If you do not provide birth years in your pedigree file but your parent IDs are always smaller than
your animal IDs, the reordering will be correct. If you do notprovide birth years, all animals in the pedigree will be
assigned a default value of ‘1900’. In that case, if parents have IDs larger than that of one or more of their offspring,
the pedigree will be incorrecrly reordered byfast_reorder(). If your pedigree file contains birth years, or you
know that parents always have smaller IDs than their offspring, thenfast_reorder() will correctly reorder your
pedigree in linear time. Founders are not guaranteed to be grouped at the beginning of the pedigree whenfast_-
reorder() is used; if you are going to calculate coefficients of partialinbreeding (Section7.4.3) then you should
instead usereorder() to reorder your pedigree.

The performance difference between the two reordering routines is not very noticeable on pedigrees of a few hundred

47

to a few thousand animals, but is quite dramatic for very large pedigrees. If your pedigree file is already reordered
then there is essentially no performance difference between the two. When creating a pedigree file from data stored in
a relational database, let the database perform the sort foryou by using an ‘ORDER BY’ statement.

7.2 Animal Identification and Cross-References

There are a number of identification attributes associated with animal objects in PyPedal pedigrees. A description of
those fields, as well as their default values, is provided in Table6.1. This section describes the data structures provided
for mapping between various animal IDs. Table7.1 lists the four structures provided for ID mapping and lists the
default values for pedigrees with integral (asd formats) and string (ASD formats) IDs. Renumbered PyPedal pedigree
objects store animal objects in a list that is typically indexed by renumbered ID. When animal IDs are strings (see
3.5.1) they are hashed to an integer and the original ID is stored ina name field. In renumbered pedigrees the original
ID is stored and replaced by a renumbered ID.

Once your pedigree is renumbered it is quite easy to see how these maps can be used to convert between various IDs.
The maps mean that you don’t have to worry about renumbered IDs and can continue to think about your animals in
terms of their original IDs, whether they be ID numbers or names. Consider the Newfoundland pedigree presented
in Figure9.4 – it is much more convenient to think about the dog named KaptnKvols von Widdersdorf, rather than
the dog whose name was hashed to the ID 5523557808241831142 amd renumbered to 48. For example, suppose you
wanted to determine his coefficient of inbreeding. It is simple to do using the maps:

>>> example = pyp_newclasses.loadPedigree(optionsfile=’newfoundland.ini’)
>>> newf_f = pyp_nrm.inbreeding(example)
>>> print newf_f[’fx’][example.idmap[example.namemap[’Kaptn Kvols von Widdersdorf’]]]

0.0

example.namemap[’Kaptn Kvols von Widdersdorf’] returns the original ID assigned to the name,
while example.idmap[...] converts from the original ID to the renumbered ID. This sortof ID/name map-
ping is sued in a number of places in PyPedal, such as in the three generation pedigree routine in thepyp_reports
module.

Note that if an animal has its original ID as its name, which isthe default when integral IDs and no animal names are
provided, the name is changed to the renumbered ID when the pedigree is renumbered.

Table 7.1: Animal identification and cross-references.

Map name
asd format ASD format Renumbered

Key Value Key Value Key Value
idmap animal ID animal ID name name original ID renumbered ID
backmap animal ID animal ID name name renumbered ID original ID
namemap name animal ID name name name original ID
namebackmap animal ID name name name original ID name

7.3 Measures of Genetic Variation

Coefficients of inbreeding and relationship (Wright 1922) have been commonly used to describe the genetic diversity
in livestock populations (Young and Seykora 1996). Inbreeding coefficients represent an individual’s expected genetic
homozygosity due to the relatedness of its parents. Coefficients of relationship describe the expected proportion of

48 Chapter 7. Methodology

genes two individuals share due to their relatedness. Theseare relative measures that depend on such factors as
the completeness and depth of pedigrees. Over time, these coefficients change in response to breeding and culling
decisions, and they may be used as indicators of the genetic variability of a population. Rapid methods for calculating
coefficients of inbreeding and relationship for large populations have been implemented (Wiggans, Van Raden, and
Zuurbier 1995).

Populations under study rarely conform to the theory established for the use of coefficients of inbreeding (Wright
1931). Lacy (1989) and Boichard et al. (1997) proposed measures of genetic variation based on ideas fromcon-
servation genetics. Lacy (1989) proposed the idea of the number of founder equivalents in assessing populations. A
founder is an ancestor whose parents are unknown. If all founders contribute to the population equally, then the founder
equivalent is equal to the number of founders. When founderscontribute unequally to the population, the number of
founder equivalents decreases. Boichard et al. (1997) developed the idea of founder ancestor equivalents, whichis the
minimum number of ancestors necessary to explain the genetic diversity of the current population. Founder ancestor
equivalents account for bottlenecks, unlike founder equivalents, and are more accurate in populations undergoing in-
tense selection. Caballero and Toro (2000) discussed the relationships among these and other measures of diversity in
small populations, and demonstrate their use (Toro, Rodriganez, Silio., and Rodriguez 2000).

Roughsedge et al. (1999) used average coefficients of inbreeding, average coefficients of relationship, founder equiv-
alent numbers, and founder ancestor numbers to document thedecrease in genetic diversity in the British dairy cattle
population over the last 25 years. Changes in founder equivalent number and founder ancestor number reflected the use
of a small number of influential individuals to improve the genetic merit of that population. Accompanying changes
in average inbreeding and relationship did not accurately reflect that loss of diversity. Such results highlight the need
for additional tools when assessing complex populations.

7.4 Computational Details

7.4.1 Inbreeding and Related Measures

Coefficients of relationship (rij) and inbreeding (fi) are calculated using the method of Wiggans et al. (1995). An
empty dictionary is created to store animal IDs and coefficients of inbreeding. For each animal in the pedigree,
working from youngest to oldest, the dictionary is queried for the animal ID. If the animal does not have an entry in
the dictonary, a subpedigree containing only relatives of that animal is extracted and the coefficients of inbreeding are
calculated and stored in the dictionary. A second dictionary keeps track of sire-dam combinations seen in the pedigree.
If a full-sib of an animal whose pedigree has already been processed is encountered the full-sib receives a COI identical
to that of the animal already processed. This approach allows for computation of COI for arbitrarily large populations
because it does not require allocation of a single NRM of order n2, wheren is the size of the pedigreed population. In
most cases, the NRM for a subpedigree is on the order of 200, although this can vary with species and population data
structure.

Average and maximum coefficients of inbreeding are computedfor the entire population and for all individuals with
non-zero inbreeding. The average relationship among all individuals is also computed. Theoretical and realized
effective population sizes,Ne(t), andNe(r), were estimated as (Falconer and MacKay 1996):

Ne(t) =
4NmNf

Nm + Nf

and

Ne(t) =
1

2∆f

7.4. Computational Details 49

whereNm andNf are the number of sires and dams in the population, respectively, and∆f is the change in population
average inbreeding between generationst andt+1. Interpretation ofNe(t) can be problematic when∆f is calculated
from incomplete or error-prone pedigrees.

7.4.2 Ancestral Inbreeding

Ballou (1997) described ancestral inbreeding, the probability that an individual inherited an allele that had undergone
inbreeding in the past at least once, in a study of purging recessives and inbreeding in conservation genetics. This is a
different idea than the usual coefficient of inbreeding as anindividual that is not inbred may carry alleles that have been
exposed to substantial inbreeding; recall that an individual may have inbred parents, but if the parents are not related
to one another then the resulting offspring will not be themselves inbred. It has been proposed that animals deriving
from highly inbred lines may be less susceptible to inbreeding depression because deleterious recessive alleles have
been purged from the population, but literature reports on extant populations are inconsistent. Ancestral inbreeding
is calculated using a recursion equation as:fa = [fa(s) + (1 − fa(s))fs + fa(d) + (1 − fa(d))fd]/2 wherefa is
the ancestral inbreeding coefficient for an individual,f is the usual coefficient of inbreeding, and subscriptss andd
represent sires and dams, respectively. Calculations are from oldest to youngest in the population and require as inputs
only coefficients of inbreeding.

Suwanlee et al. (2007) extended the concept by presenting a gene-dropping approach (MacCluer, VandeBerg,
Read, and Ryder 1986) for calculating ancestral inbreeding, as well as modifying Ballou’s equation to account
for non-independence between individual inbreeding coefficients and ancestral inbreeding coefficients. Gene drop-
ping is also used in PyPedal for calculating founder genome equivalents (see: Section7.4.6), and the code
used by thepyp_metrics.dropped_ancestral_inbreeding() and pyp_metrics.effective_-
founder_genomes() routines are similar, although the former drops an arbitrary number of unlinked biallelic
loci through the pedigree while the latter drops only a single locus.

7.4.3 Partial Inbreeding

Partial inbreeding coefficients,Fij , measure the probability that the alleles at an arbitrary locus in individuali are
identitical-by-descent and that the alleles were derived from an allele in founderj (Lacy, Alaks, and Walsh 1996);
Gulisija et al. (2006) provide an excellent description of the tabular method forcalculatingFij . Computational
requirements may be high for large pedigrees with a large number of founders because partial kinship matrices are
calculated for each founder in the pedigree. The usual coefficients of inbreeding may be obtained by summing the
coefficients of partial inbreeding over all founders commonto the parents of animali, that is,fi =

∑

j Fij .

For example, consider the pedigree presented in Figure 2 of Gulisija and Crow (2007). The individual of interest,I, has
an inbreeding coefficient of 0.375 and coefficients of partial inbreeding to founders J, K, and M of 0.21875,0.09375,
and 0.0625, respectively. As asserted,0.21875 + 0.09375 + 0.0625 = 0.375.

7.4.4 Generation Coefficients

Generation coefficients are assigned using the method of (Pattie 1965). Founders, defined as individuals with unknown
parents, are assigned generation codes of 0. All other animals are assigned generation codes as:

GCo =
(GCs + GCd)

2
+ 1

whereGCo, GCs, GCd represent offspring, sire, and dam codes, respectively.

50 Chapter 7. Methodology

7.4.5 Effective Founder Number

The effective founder number (fe) was calculated as:

fe =
1

∑

p2
i

wherepi is the proportion of genes contributed by ancestor i to the current population (Lacy 1989). If all founders had
contributed equally to the population, thenfe would be the same as the actual number of founders. When founders
contribute to the population unequally,fe is smaller than the actual number of founders. The greater the inequity in
founder contributions, the smaller the effective founder number.

A subpedigree approach, similar to that used for calculation of inbreeding (see7.4.1 for details), is also used for
calculatingfe.

7.4.6 Founder Genome Equivalents

Lacy (1989) also defined the number of founder genome equivalents (fg) as a measure of genetic diversity. A founder
genome equivalent is the number of founders that would produce a population with the same diversity of founder alleles
as the pedigree population assuming all founders contributed equally to each generation of descendants. Founder
genome equivalents are calculated as:

fg =
1

∑ pi

ri

wherepi is the proportion of genes contributed by ancestori to the current population andri is the proportion of
founderi’s genes that are retained in the current population. Likefe, fg accounts for unequal founder contributions.
Unlikefe, fg also accounts for the fraction of founder genomes lost from the pedigree through drift during bottlenecks.
Althoughfg is the more accurate description of the amount of founder variation present in a population, it can only be
calculated directly for simple pedigrees. For large or complex pedigrees, the number of founder genome equivalents
must be approximated based on computer simulation of a largenumber of segregations through the pedigree. This is
done by assigning each founder a unique pair of alleles and randomly transmitting those alleles through the pedigree
(MacCluer, VandeBerg, Read, and Ryder 1986). The number of founder genome equivalents is similar to theeffective
founder number, but the former has been devalued based on theproportion of its genome that has probably been lost
to drift (Lacy 1989).

7.4.7 Effective Ancestor Number

In populations that have undergone a bottleneck the effective number of founders computed using Lacy’s (1989)
approach is overestimated. Large contributions made by recent ancestors are more important to the population with
respect to the loss of genetic diversity than equal contributions made long ago. Boichard et al. (1997) proposed a
second measure of diversity to deal with such situations, the effective number of ancestors (fa), which considers the
genetic contribution of all ancestors in the population, not just founders. The effective number of ancestors treats all
ancestors in the population the same way, and is computed as:

fa =
1

∑

q2
i

whereqi is the genetic contribution of theith ancestor not explained by the previousi-1 ancestors. The ancestors with

7.4. Computational Details 51

the greatest contributions are selected iteratively. The number of ancestors with a positive genetic contribution is less
than or equal to the actual number of founders.

7.4.8 Pedigree Completeness

Pedigree completeness (Cassell, Adamec, and Pearson 2003), the proportion of known pedigree information for an
arbitrary number of generations, is computed as:

cp =
ak

∑g

i=1 2i

where cp is pedigree completeness andak is the number of known ancestors ing generations. The
default (which may be overridden) is to compute four-generation pedigree completeness. Lowcp indi-
cates that there is little pedigree information available for an individual, which may result in biased es-
timates of inbreeding and other measures of diversity. Pedigree completeness and ancestor loss coeffi-
cients (http://www.newfoundlanddog-database.net/en/ahnen.php?num=0000025330), which
are sometimes seen in dog breeding materials, are equivalent measures if the same number of generations were used
in the calculations.

52 Chapter 7. Methodology

http://www.newfoundlanddog-database.net/en/ahnen.php?num=0000025330

CHAPTER

EIGHT

HOWTOs

Computers are good at following instructions, but not at reading your mind. — Donald E. Knuth

8.1 Basic Tasks

8.1.1 How do I load a pedigree from a file?

Each pedigree that you read must be passed its own dictionaryof options that must have at least a pedigree file name
(pedfile) and a pedigree format string (pedformat). You then callpyp_newclasses.NewPedigree() and pass
the options dictionary as an argument. The following code fragment demonstrates how to read a pedigree file:

options = {}
options[’pedfile’] = ’new_lacy.ped’
options[’pedformat’] = ’asd’

example1 = pyp_newclasses.loadPedigree(options)

The options dictionary may be named anything you like. In this manual, and in the example programs distributed with
PyPedal,optionsis the name used.

8.1.2 How do I load multiple pedigrees in one program?

A PyPedal program can load more than one pedigree at a time. Each pedigree must be passed its own op-
tions dictionary, and the pedigrees must have different names. This is easily done by creating a dictionary
with global options and customizing it for each pedigree. Once you have created a pedigree by callingpyp_-
newclasses.NewPedigree(’options’) you can change the options dictionary without affecting that pedi-
gree (a pedigree stores a copy of the options dictionary in itskw attribute). The following code fragment demonstrates
how to read two pedigree files in a single program:

53

Create the empty options dictionary
options = {}

Read the first pedigree
options[’pedfile’] = ’new_lacy.ped’
options[’pedformat’] = ’asd’
options[’pedname’] = ’Lacy Pedigree’
example1 = pyp_newclasses.loadPedigree(options)

Read the second pedigree
options[’pedfile’] = ’new_boichard.ped’
options[’pedformat’] = ’asdg’
options[’pedname’] = ’Boichard Pedigree’
example2 = pyp_newclasses.loadPedigree(options)

Note thatpedformatonly needs to be changed if the two pedigrees have different formats. You do not even have to
changepedfile.

8.1.3 How do I renumber a pedigree?

Set therenumber option to ‘1’ before you load the pedigree.

options = {}
options[’renumber’] = 1
options[’pedfile’] = ’new_lacy.ped’
options[’pedformat’] = ’asd’
example1 = pyp_newclasses.loadPedigree(options)

If you do not renumber a pedigree at load time and choose to renumber it later you must set therenumber option
and call the pedigree’srenumber() method:

example.kw[’renumber’] = 1
example.renumber()

For more details on pedigree renumbering see Section3.6.

8.1.4 How do I turn off output messages?

You may want to suppress the output that is normally written to STDOUT by scripts. You do this by setting the
messages option:

options[’messages’] = ’quiet’

The default setting formessages is ‘verbose’, which produces lots of messages.

54 Chapter 8. HOWTOs

8.1.5 How do I load a pedigree whose columns are tab-delimited?

The default column-delimiter used by PyPedal is a space (‘ ’). You can change the delimiter by setting thesepchar
option:

options[’sepchar’] = ’\t’

Commas are also commonly used as delimiters, and comma-separated value (CSV) files can be read by settingsepchar
to’,’. If you are using a configuration file, youmustenclose any delimiter containing a backslash in double quotation
marks (“”):

options[’sepchar’] = "\t"

If you do not enclose the delimiter properly you will receivean error message such as:

[jcole@jcole2 examples]$ python new_ids.py
[INFO]: Logfile new_ids2.log instantiated.
[INFO]: Preprocessing new_ids2.ped
[INFO]: Opening pedigree file
[ERROR]: The record on line 2 of file new_ids2.ped does not have the same number

of columns (1) as the pedigree format string (ASD) says that it should
(3). Please check your pedigree file and the pedigree format string for
errors.

[jcole@jcole2 examples]$

8.2 Calculating Measures of Genetic Variation

8.2.1 How do I calculate coefficients of inbreeding?

This requires that you have a renumbered pedigree (HOWTO8.1.3).

options = {}
options[’renumber’] = 1
options[’pedfile’] = ’new_lacy.ped’
options[’pedformat’] = ’asd’
example1 = pyp_newclasses.loadPedigree(options)
example_inbreeding = pyp_nrm.inbreeding(example)
print example_inbreeding

The dictionary returned bypyp_nrm.inbreeding(example), example inbreeding, contains two dictionaries:
fx contains coefficients of inbreeding (COI) keyed to renumbered animal IDs andmetadatacontains summary statis-
tics. metadataalso contains two dictionaries:all contains summary statistics for all animals, whilenonzerocontains
summary statistics for only animals with non-zero coefficients of inbreeding. If you printexample inbreedingyou’ll
get the following:

8.2. Calculating Measures of Genetic Variation 55

{’fx’: {1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.0,
10: 0.0, 11: 0.0, 12: 0.0, 13: 0.0, 14: 0.0, 15: 0.0, 16: 0.0, 17: 0.0, 18: 0.0,
19: 0.0, 20: 0.0, 21: 0.0, 22: 0.0, 23: 0.0, 24: 0.0, 25: 0.0, 26: 0.0, 27: 0.0,
28: 0.25, 29: 0.0, 30: 0.0, 31: 0.25, 32: 0.0, 33: 0.0, 34: 0.0, 35: 0.0, 36: 0.0,
37: 0.0, 38: 0.21875, 39: 0.0, 40: 0.0625, 41: 0.0, 42: 0.0, 43: 0.03125, 44: 0.0,
45: 0.0, 46: 0.0, 47: 0.0},
’metadata’: {’nonzero’: {’f_max’: 0.25, ’f_avg’: 0.16250000000000001,
’f_rng’: 0.21875, ’f_sum’: 0.8125, ’f_min’: 0.03125, ’f_count’: 5},
’all’: {’f_max’: 0.25, ’f_avg’: 0.017287234042553192, ’f_rng’: 0.25,
’f_sum’: 0.8125, ’f_min’: 0.0, ’f_count’: 47}}}

Obtaining the COI for a given animal, say 28, is simple:

>>> print example_inbreeding[’fx’][28]
’0.25’

To print the mean COI for the pedigree:

>>> print example_inbreeding[’metadata’][’all’][’f_avg’]
’0.017287234042553192’

8.3 Databases and Report Generation

8.3.1 How do I load a pedigree into a database?

Thepyp_reports module (??) uses thepyp_db module (Section??) to store and manipulate a pedigree in an
SQLite database. In order to use these tools you must first load your pedigree into the database. This is done with a
call topyp_db.loadPedigreeTable():

options = {}
options[’pedfile’] = ’hartlandclark.ped’
options[’pedname’] = ’Pedigree from van Noordwijck and Scharloo (1981)’
options[’pedformat’] = ’asdb’

example = pyp_newclasses.loadPedigree(options)

pyp_nrm.inbreeding(example)
pyp_db.loadPedigreeTable(example)

The routines inpyp_reports will check to see if your pedigree has already been loaded; ifit has not, a table will
be created and populated for you.

8.3.2 How do I update a pedigree in the database?

Changes to a PyPedal pedigree object are not automatically saved to the database. If you have changed
your pedigree, such as by calculating coefficients of inbreeding, and you want those changes visible to the

56 Chapter 8. HOWTOs

database you have to callpyp_db.loadPedigreeTable() again. IMPORTANT NOTE: If you call pyp_-
db.loadPedigreeTable()after you have already loaded your pedigree into the database it will drop the existing
table and reload it; all data in the existing table will be lost! In the following example, the pedigree is written to table
hartlandclark in the databasepypedal:

options = {}
options[’pedfile’] = ’hartlandclark.ped’
options[’pedname’] = ’Pedigree from van Noordwijck and Scharloo (1981)’
options[’pedformat’] = ’asdb’

example = pyp_newclasses.loadPedigree(options)

pyp_db.loadPedigreeTable(example)

pypedal is the default database name used by PyPedal, and can be changed using a pedigree’sdatabase_-
name option. By default, table names are formed from the pedigreefile name. A table name can be specified
using a pedigree’sdbtable_name option. Continuing the above example, suppose that I calculated coefficients of
inbreeding on my pedigree and want to store the resulting pedigree in a new table namednoordwijck and scharloo -
inbreeding:

options[’dbtable_name’] = ’noordwijck_and_scharloo_inbreeding’
pyp_nrm.inbreeding(example)
pyp_db.loadPedigreeTable(example)

You should see messages in the log telling you that the table has been created and populated:

Tue, 29 Nov 2005 11:24:22 WARNING Table noordwijck_and_scharloo_inbreeding does
not exist in database pypedal!

Tue, 29 Nov 2005 11:24:22 INFO Table noordwijck_and_scharloo_inbreeding
created in database pypedal!

8.4 Pedigrees as Graphs

PyPedal includes tools for working with pedigrees as algebraic structures known as directed graphs, or digraphs.
Digraphs are not graphs in the sense of graphics for presentation or display. Rather, they are mathematical abstractions,
the study of which can provide interesting information about the structure of a population. A digraph represents a
pedigree as a set of vertices (also called nodes), which correspond to animals, and a collection of edges, which connect
nodes to one another. In the context of a pedigree, edges indicate that a parent–offspring relationship exists between
two animals. If a path can be constructed between two vertices (animals) in the graph then those animals are related.
If no path can be constructed between teo nodes, then no relatinship exists between the two. Routines for working
with graphs (also called networwks) are contained in thepyp_networkmodule (??)

8.4.1 How do I convert a pedigree to a graph?

The functionpyp_network.ped_to_graph() takes a PyPedal pedigree object as its argument and returns a
NetworkX (https://networkx.lanl.gov/) XDiGraph object:

8.4. Pedigrees as Graphs 57

https://networkx.lanl.gov/

example = pyp_newclasses.loadPedigree(optionsfile=’new_networkx.ini’)
ng = pyp_network.ped_to_graph(example)

Once you’ve got a graph, you use the NetworkX API to operate onthe graph. For example, the number of animals in
the pedigree is simply the number of nodes in the graph:

print ’Number of animals in pedigree: %s’ % (ng.order())
print ng.nodes()

8.4.2 How do I convert a graph to a pedigree?

It is possible to create a PyPedal pedigree from a NetworkX graph. This is useful, for example, when you’d like
to create a pedigree representing a subset of the populationin a NewPedigree object. pyp_nrm.recurse_-
pedigree() and related functions won’t do the trick because they returnonly lists of animal IDs, not actual
NewPedigree instances. To create a pedigree from a graph you simply buildyour options dictionary and call
pyp_newclasses.loadPedigree():

options = {}
options[’pedfile’] = ’dummy’
options[’messages’] = ’verbose’
options[’renumber’] = 1
options[’pedname’] = ’Testing fromgraph()’
options[’pedformat’] = ’asd’
options[’set_offspring’] = 1
options[’set_ancestors’] = 1
options[’set_sexes’] = 1
options[’set_generations’] = 1
example2 = pyp_newclasses.loadPedigree(options,pedsource=’graph’,pedgraph=ng)

You must provide a non-nullpedfile keyword in your options dictionary, as well as thepedsource and
pedgraph arguments topyp_newclasses.loadPedigree().

There is a known bug with logfile creation when loading a pedigree from a digraph.

8.4.3 How do I load a pedigree from a file containing a graph stored as an adjacency
list?

PyPedal can read graphs stored in text files as adjacency lists, which is one way of representing directed graphs:

options = {}
options[’pedfile’] = ’pedigree.adjlist’
options[’messages’] = ’verbose’
options[’pedname’] = ’Testing graphfile’
options[’pedformat’] = ’asd’
example = pyp_newclasses.loadPedigree(options,pedsource=’graphfile’)

58 Chapter 8. HOWTOs

8.4.4 How do I save a graph as an adjacency list?

PyPedal, using NetworkX, can save graphs as adjacency lists:

example.savegraph(’pedigree.adjlist’)

8.5 Miscellaneous

8.5.1 How do I export a numerator relationship matrix so that I can read it into Octave?

Numerator relationship matrices may be exported to text files for use with, e.g., Octave using the
NewAMatrix.savemethod:

example = pyp_newclasses.loadPedigree(optionsfile=’denny.ini’)
amatrix = pyp_newclasses.NewAMatrix(example.kw)
amatrix.form_a_matrix(example.pedigree)
amatrix.tofile(’Ainv.txt’)

When matrices are written to text files array elements are separated bysepchar(Table3.1).

Matrices may also be written to a binary format. The default value of thenrm format pedigree option istext. To
write files in binary format you must either specify the valueof thenrm formatoption asbinary before you load
your pedigree file or use thenrm formatkeyword when you callNewAMatrix.save:

amatrix.tofile(’Ainv.bin’,nrm_format=’binary’)

Once you’ve saved the NRM to a file, say’Ainv.txt’, in text format you can easily read it into Octave:

octave:1> myfile = fopen ("Ainv.txt", "r");
octave:2> ainv = fscanf(myfile,’%f’,[18,18])

This has been verified with Octave 2.1.57 under RedHat Enterprise Linux on small matrices.

8.5.2 How else can I export a NRM to a file?

Numerator relationship matrices may be exported to a text file in “ijk format”, where each line is of the form “animal-
A animal B rAB” using thepyp_io.save_ijk() function. Diagonal entries are1 + fa, wherefa is the animal’s
coefficient of inbreedin.

example = pyp_newclasses.loadPedigree(options)
Save the NRM to a file in ijk format.
Don’t forget to set the filename.
pyp_io.save_ijk(example,’nrm_ijk.txt’)

Suppose that the example above produces the following file:

8.5. Miscellaneous 59

$ head nrm_ijk.txt
4627 4627 1.125
4627 0832 0.0
4627 5538 0.5
...

In order to getfa for animal 4627 you need to find the corresponding diagonal element and subtract 1 from it:

fa = 1.125− 1.0 = 0.125

The coefficient of relationship between 4627 and 5538 is0.5 (4627 is probably a parent of 5538). Note that the file
nrm ijk.txt will include only the diagonal and upper off-diagonal elements of the NRM, and should haven+n(n+1)/2
lines.

8.5.3 How do I load a pedigree from a GEDCOM file?

As of version 2 release candidate 1 PyPedal can load pedigrees from GEDCOM 5.5 files. This is done by passing the
pedsource keyword topyp_newclasses.loadPedigreewith a value of ‘gedcomfile’:

options[’pedfile’] = ’example2.ged’
options[’pedformat’] = ’ASD’
options[’pedname’] = ’A GEDCOM pedigree’
example2 = pyp_newclasses.loadPedigree(options,pedsource=’gedcomfile’)

Note that only a limited subset of the GEDCOM format is supported, and it is possible to lose metadata when convert-
ing a pedigree from GEDCOM to PyPedal. More details on PyPedal’s GEDCOM handling can be found in Appendix
B.

8.5.4 How do I save a pedigree to a GEDCOM file?

As of version 2 release candidate 1 PyPedal can write pedigrees to GEDCOM 5.5-formatted files using the
savegedcommethod ofpyp_newclasses.NewPedigree objects. The method takes an output file name as its
argument:

test.savegedcom(’ged3.pypedal.ged’)

Note that not all attributes ofpyp_newclasses.NewAnimal objects are written to the output file. More details
on PyPedal’s GEDCOM handling can be found in AppendixB.

8.5.5 How do I load a pedigree from a string?

There are some use cases for which it is desirable to load pedigrees from strings rather than from files. This is done by
passing thepedsource keyword topyp_newclasses.loadPedigreewith a value of ‘textstream’, along
with a string named ‘pedstream’ (Figure8.1):

60 Chapter 8. HOWTOs

Figure 8.1: Pedigree loaded from a string

options = {}
options[’pedfile’] = ’’
options[’renumber’] = 1
options[’pedformat’] = ’ASD’
if __name__ == "__main__":

pedstream = ’a1,s1,d1\na2,s2,d2\na3,a1,a2\n’
test = pyp_newclasses.loadPedigree(options,pedsource=’textstream’,pedstream=pedstream)
pyp_graphics.new_draw_pedigree(test, gfilename=’partial’, gtitle=’Text Stream’, gorient=’p’,gname=1)

Note that only ASD-formatted pedigrees can be loaded this way, individual IDs are separated with commas, and
successive records are separated by newlines. All records must contain a newline, including the last record in the
string! You must also set the ‘pedfile’ option to a value, even if that value is just an empty string as in the example.

8.6 Contribute a HOWTO

Users are invited to contribute HOWTOs demonstrating how tosolve problems they’ve found interesting. In order
for such HOWTOs to be considered for inclusion in this manualthey must be licensed under the GNU Free Doc-
umentation License version 1.2 or later (http://www.gnu.org/copyleft/fdl.html). Authorship will be
acknowledged, and copyright will remain with the author of the HOWTO.

8.6. Contribute a HOWTO 61

http://www.gnu.org/copyleft/fdl.html

62

CHAPTER

NINE

Graphics

If I could say it in words there would be no reason to paint. — Edward Hopper

9.1 PyPedal Graphics

PyPedal is capable of producing graphics from information contained in a pedigree, including pedigree drawings,
line graphs of changes in genetic diversity over time, and visualizations of numerator relationship matrices. These
graphics are non-interactive: output images are created and written to output files. A separate program must be used
to view and/or print the image; web browsers make reasonablygood viewers for a small number of images. If you
are creating and viewing large numbers of images you may wantto obtain an image management package for your
platform. Default and supported file formats for each of the graphics routines are presented in Table9.1.

Table 9.1: Default graphics formats.

Routine Default Format Supported Formats
draw pedigree JPG JPG, PNG, PS
new draw pedigree JPG JPG, PNG, PS
pcolor matrix pylab PNG PNG only
plot founders by year PNG PNG only
plot founders pct by year PNG PNG only
plot line xy PNG PNG only
rmuller pcolor matrix pil PNG PNG only
rmuller spy matrix pil PNG PNG only
spy matrix pylab PNG PNG only

9.1.1 Drawing Pedigrees

The pedigree from Figure 2 in Boichard et al. (1997) is shown in Figure9.1, and shows males enclosed in rectangles
and females in ovals. Figure9.2 shows a pedigree in which strings are used for animal IDs; animal are enclosed in
ovals because sexes were not specified in the pedigree file andtheset_sexes option was not specified. A more
complex German Shepherd pedigree is presented in Figure9.3; the code used to create this pedigree is:

pyp_graphics.draw_pedigree(example, gfilename=’doug_p_rl_notitle’, gname=1,
gdirec=’RL’, gfontsize=12)

The resulting graphic is written to dougp rl notitle.jpg; note from Table9.1that the default file format fordraw_-

63

1

5 2

36

47

8

9

10

11

12

13

14

1517

18 16

19

20

Figure 9.1: Pedigree 2 from Boichard et al. (1997)

64 Chapter 9. Graphics

animal1

animal9

animal2

animal5

animal3

animal4

animal10animal7

animal6

animal11 animal12 animal13

animal8

Figure 9.2: A pedigree with strings as animal IDs

Figure 9.3: German Shepherd pedigree

9.1. PyPedal Graphics 65

(0,0) Nodes are colored by number of descendantss.

Hector van het HeidemeerUrsus of the Thatch Roof

Biserka vom Riesrand

As-Dur vom WeserwallIris vom Weserwall

Bronco vom Derner Baum

Benno von Ammertal

Alegra-Bar vom Belmer Berg

Caress-Bar vom Belmer Berg

Nordbjorns Gringo

Jehaj AlbertNew-Fuur-Lands Block Buster

Highland Bear of Pouch Cove

Johns Big Ben of Pouch Cove

Pouch Coves Patriot of Cayuga

Boedha van het Hoogveen

Dukeroys Elske BerthaBastiaan van Beerkestein

Schooners Yosef of Newton ArkPouch Coves Treasure Chest

La Bellas Rigoletto

KatinkaEskapade vom Heckenhof

Arvals Nordstrands Talisman

Black Domes Handle with Care

Graaf Gabor van Overessinge

Fandi van de Knijpsbrug

Amitys Bearfoot of Pouch CoveYankee Peddler of Pouch CoveBjornebandens Here comes Trouble

Enrik von LuxemburgGraf von Luxemburg

Fjordblinks Hakon

Liisa vom Riesrand

Aaron van het HoogveenFastwin of the Dark Blossom

Spokinewfs Cariboo Cowboy

Bubbelinas Dekanawida Squaw

Dukeroys Daphne

Eskapades Barcardi

Souvenir of Pouch Cove

Bjornebandens Fit for Fight

Bonny vom Weserwall

Anuschka von St. Clemens

Lifebuoys Penny of Bubbelina

Black Domes Miss Caminickers

New-Fuur-Lands Rosemarys Baby

Ina vom Forellenhof

Fenja vom Riesrand

Fleur of the Coastguard
Cara von der Dussel

Jehaj Vilhelmina

Kaptn Kvols von Widdersdorf

Ellis-Bijou of the Thatch Roof

King von der Dussel

Frederikke

Ad Lib of Pouch Cove

Zarah von Luxemburg

Gracia van de Papenhof

(1,0)

Schooners Yosef of Newton Ark

Amitys Bearfoot of Pouch Cove

Lifebuoys Penny of Bubbelina

Black Domes Miss Caminickers

Ellis-Bijou of the Thatch Roof

(0,1) Gracia van de Papenhof(1,1)

Figure 9.4: Newfoundland colored pedigree

pedigree() is JPG rather thanPNG, as is the case for the other graphics routines. To get a PNG simply pass the
argumentgformat=’png’ to draw_pedigree(). For details on the options taken bydraw_pedigree() please
refer to the API documentation (Section??). draw_pedigree() uses rectangles to indicates known males, circles
to indicate known females, and octagons to indicate animalsof unknown sex.

Pedigrees can also be colored using thecolor_pedigree() function in the pyp_jbc module. At
present, animals are shaded either by the number of sons produced or by the total number of descen-
dants. The five-generation pedigree of the Newfoundland dogKing von der Düssel is presented in Figure9.4
(http://www.newfoundlanddog-database.net/en/ahnen.php?num=0000025330, data used with
permission), and the nodes are shaded based on number of descendants.

FIX ◮◮◮ Windows users should set thedrawers keyword to ’old’ when calling color_pedigree(). This
will call draw_colored_pedigree() rather than new_draw_colored_pedigree(). The latter re-
quires that PyGraphviz library be installed and there is not yet an easy way to install it on Windows. ◭◭◭

66 Chapter 9. Graphics

http://www.newfoundlanddog-database.net/en/ahnen.php?num=0000025330

Figure 9.5: Average inbreeding by birth year for the US Ayrshire cattle population

9.1.2 Drawing Line Graphs

The plot_line_xy() routine provides a convenient tool for creating two-dimensional line graphs. Figure9.5
shows the plot of inbreeding by birth year for the US Ayrshirecattle population. The plot is produced by the call:

pyp_db.loadPedigreeTable(ay)
coi_by_year = pyp_reports.meanMetricBy(ay,metric=’fa’,byvar=’by’)
cby = coi_by_year
del(cby[1900])
pyp_graphics.plot_line_xy(coi_by_year, gfilename=’ay_coi_by_year’,

gtitle=’Inbreeding coefficients for Ayrshire cows’, gxlabel=’Birth year’,
gylabel=’Coefficient of inbreeding’)

The code above usespyp_reports.meanMetricBy() (see??) to populatecoi by year; the keys incoi by -
yearare plotted in the x-axis, and the values are plotted on the y-axis. The default birth year, 1900, was deleted from
the dictionary before the plot was drawn because leaving thedefault birthyear in the plot was distracting and somewhat
misleading. The only restriction that you have to observe isthat the value plotted on the y-ais has to be a numeric
quantity.

If you need more complicated plots than are produced byplot_line_xy() you can write a new plotting func-
tion (Chapter11) that uses the tools in matplotlib (http://matplotlib.sourceforge.net/). For complete
details on the options taken byplot_line_xy please refer to the API documentation (??).

9.1.3 Visualizing Numerator Relationship Matrices

Two routines are provided for visualization of numerator relationship matrices (NRM),rmuller_pcolor_-
matrix_pil() andrmuller_spy_matrix_pil().

As an example, we will consider the NRM for the pedigree in Figure9.1. The matrix is square and symmetric; the

9.1. PyPedal Graphics 67

http://matplotlib.sourceforge.net/

Figure 9.6: Pseudocolored NRM from the Boichard et al. (1997) pedigree

diagonal values correspond to1 + fa, wherefa is an animal’s coefficient of inbreeding; animals with a diagonal
element> 1 are inbred.

1. 0. 0. 0. 0.5 0. 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0.5 0. 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0. 0. 0. 0. 0. 0.

0. 0. 0. 1. 0. 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0. 0. 0. 0. 0. 0.

0.5 0.5 0. 0. 1. 0. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0. 0. 0. 0. 0. 0.

0. 0. 0.5 0.5 0. 1. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0. 0. 0. 0. 0. 0.

0.25 0.25 0.25 0.25 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0. 0. 0. 0. 0. 0.

0.25 0.25 0.25 0.25 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0.5 0. 0. 0. 0. 0. 0.

0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5 0.5 0. 0. 0. 0. 0. 0.

0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5 0.5 0. 0. 0. 0. 0. 0.

0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0.5 0. 0. 0. 0. 0. 0.

0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0.5 0. 0. 0. 0. 0. 0.

0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1. 0.5 0. 0. 0. 0. 0. 0.

0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.5 0.5 0.5 0.5
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.5 0.5 0.5 0.5
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.5 0.5 1. 0.5 0.75 0.75
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.5 0.5 0.5 1. 0.75 0.75
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.5 0.5 0.75 0.75 1.25 0.75
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.5 0.5 0.75 0.75 0.75 1.25

Note that the array only contains six distinct values: 0., 0.25, 0.5, 0.75, 1.0, and 1.25. These six values will be used to
create the color map used byrmuller_pcolor_matrix_pil().

rmuller_pcolor_matrix_pil() produces pseudocolor plots from NRM. A pseudocolor plot is an array of
cells that are colored based on the values the correspondingcells in the NRM. The minimum and maximum values
in the NRM are assigned the first and last colors in the colormap; other cells are colored by mapping their values to
colormap elements. In the example above, the minimum value is 0.0 and the maximum value is 1.0 (Figure9.6). The
two inbred animals in the population are easily identified asthe yellow diagonal elements in the bottom-left corner of
the matrix.rmuller_spy_matrix_pil() is similar tormuller_pcolor_matrix_pil(), but it is used to
visualize the sparsity of a matrix. Cells are either filled, indicating that the value is non-zero, or not filled, indicating
that the cell’s value is zero. In Figure9.7it is easy to see the two separate families in the pedigree.

68 Chapter 9. Graphics

Figure 9.7: Sparsity of the NRM from the Boichard et al. (1997) pedigree

9.1. PyPedal Graphics 69

70

CHAPTER

TEN

Report Generation

If we spoke a different language, we would perceive a somewhat different world. — Ludwig Wittgenstein

10.1 Overview

An overview of the report generation tools in PyPedal is provided in this chapter. The creation of a new, custom report
is demonstrated.

PyPedal has a framework in place to support basic report generation. This franework consists of two components: a
database access module,pyp_db (Section??), and a reporting module,pyp_reports (Section??). The SQLite 3
database engine (http://www.sqlite.org/) is used to store data and generate reports. The ReportLab exten-
sion to Python (http://www.reportlab.org/) allows users to create reports in the Adobe Portable Document
Format (PDF). As a result, there are two types of reports thatcan be produced: internal summaries that can be fed to
other PyPedal routines (e.g. the report produced bypyp_reports.meanMetricBy() can be passed topyp_-
graphics.plot_line_xy() to produce a plot) and printed reports in PDF format. When referencing thepyp_-
reports API note that the convention used in PyPedal is that procedures which produce PDFs are prepended with
’pdf’. Sections10.2and10.3demonstrate how to create new or custom reports.pyp_reportswas added to PyPedal
with the intention that end-users develop their own custom reports usingpyp_reports.meanMetricBy() as a
template. More material on adding new functionality to PyPedal can be found in Chapter11.

Column names, data types, and descriptions of contents for pedigree tables are presented in Table10.1. The
metric_to_column andbyvar_to_column dictionaries inpyp_db are used to convert between convenient
mnemonics and database column names. You may need to refer toTable10.1 for unmapped column names when
writing custom reports. If you happen to view a table scheme using thesqlite3 command-line utility you will notice
that the columns are ordered differently in the database than they are in the table; the table has been alphabetized for
easy reference.

Table 10.1: Columns in pedigree database tables.

Name Type Note(s)
age real Age of animal
alive char(1) Animal’s mortality status
continued on next page

71

http://www.sqlite.org/
http://www.reportlab.org/

Name Type Note(s)
ancestor char(1) Ancestor status
animalID integer Must be unique!
animalName varchar(128) Animal name
birthyear integer Birth year
breed text Breed
coi real Coefficient of inbreeding
damID integer Dam’s ID
founder char(1) Founder status
gencoeff real Pattie’s generation coefficient
generation real Generation
herd integer Herd ID
infGeneration real Inferred generation
num daus integer Number of daughters
num sons integer Number of sons
num unk integer Offspring of unknown sex
originalHerd varchar(128) Original herd ID
originalID text Animal’s original ID
pedgreeComp real Pedigree completeness
renumberedID integer Animal’s renumbered ID
sex char(1) Sex of animal
sireID integer Sire’s ID

10.1.1 Three Generation Pedigrees

A report for producing three-generation pedigrees,pdf3GenPed(), is included in thepyp_reportsmodule. The
sample output shown in Figure10.1contains output for one animal. However, ifpdf3GenPed() is passed a list of
animal IDs the resulting PDF will contain a pedigree for eachanimal that can be printed as a booklet. See Section??
for usage details.

10.2 Creating a Custom Internal Report

Internal reports typically aggregate data such that the result can be handed off to another PyPedal routine for further
processing. To do this, the pedigree is loaded into a table inan SQLite database against which queries are made.
This is faster and more flexible than writing reporting routines that loop over the pedigree to construct reports, but it
does require some knowledge of the Structured Query Language (SQL;http://www.sql.org/). The canonical
example of this kind of report is the passing of the dictionary returned bypyp_reports.meanMetricBy() to
pyp_graphics.plot_line_xy() (see9.1.1). That approach is outlined in code below.

72 Chapter 10. Report Generation

http://www.sql.org/

Figure 10.1: Example of a printed three generation pedigree.

10.2. Creating a Custom Internal Report 73

def inbreedingByYear(pedobj):
curs = pyp_db.getCursor(pedobj.kw[’database_name’])

Check and see if the pedigree has already been loaded. If not, do it.
if not pyp_db.tableExists(pedobj.kw[’database_name’], pedobj.kw[’dbtable_name’]):

pyp_db.loadPedigreeTable(pedobj)

MYQUERY = "SELECT birthyear, pyp_mean(coi) FROM %s GROUP BY birthyear \
ORDER BY birthyear ASC" % (pedobj.kw[’dbtable_name’])

curs.execute(MYQUERY)
myresult = curs.fetchall()
result_dict = {}
for _mr in myresult:

_level, _mean = _mr
result_dict[_level] = _mean

return result_dict

You should always check to see if your pedigree has been loaded into the database before you try and make queries
against the pedigree table or your program may crash.inbreedingByYear() returns a dictionary contain-
ing average coefficients of inbreeding keyed to birth years.The query result,myresult, is a list of tuples; each
tuple in the list corresponds to one row in an SQL resultset. The tuples inmyresultare unpacked into tempo-
rary variables that are then stored in the dictionary,result dict (for information on tuples see the Python Tutorial
(http://www.python.org/doc/tut/node7.html#SECTION007300000000000000000). If the re-
sultset is empty,result dict will also be empty. As long as you can write a valid SQL query for the report you’d
like to assemble, there is no limitation on the reports that can be prepared by PyPedal.

10.3 Creating a Custom Printed Report

If you are interested in custom printed reports you should begin by opening the filepyp_reports.py and reading
through the code for thepdfPedigreeMetadata() report. It has been heavily commented so that it can be used
as a template for developing other reports. ReportLab provides fairly low-level tools that you can use to assemble
documents. The basic idea is that you create a canvas on whichyour image will be drawn. You then create text
objects and draw them on the canvas. When your report is assembled you save the canvas on which it’s drawn to a
file. PyPedal provides a few convenience functions for such commonly-used layouts as title pages and page ”frames”.
In the following sections of code I will discuss the creationof a pdfInbreedingByYear() printed report to
accompany theinbreedingByYear() internal report written in Section10.2. First, we import ReportLab and
check to see if the user provided an output file name. If they didn’t, revert to a default.

def pdfInbreedingByYear(pedobj,results,titlepage=0,reporttitle=’’,reportauthor=’’, \
reportfile=’’):
import reportlab
if reportfile == ’’:

_pdfOutfile = ’%s_inbreeding_by_year.pdf’ % (pedobj.kw[’default_report’])
else:

_pdfOutfile = reportfile

Next call_pdfInitialize(), which returns a dictionary of settings, mostly related to page size and margin loca-
tions, that is used throughout the routine._pdfInitialize() uses thepaper_size keyword in the pedigree’s
options dictionary, which is either ‘letter’ or ‘A4’, and thedefault_unit, which is either ‘inch’ or ‘cm’ to populate

74 Chapter 10. Report Generation

http://www.python.org/doc/tut/node7.html#SECTION007300000000000000000

the returned structure. This should allow users to move between paper sizes without little or no work. Once the PDF
settings have been computed we instantiate a canvas object on which to draw.

_pdfSettings = _pdfInitialize(pedobj)
canv = canvas.Canvas(_pdfOutfile, invariant=1)
canv.setPageCompression(1)

There is a hook in the code to toggle cover pages on and off. It is arguably rather pointless to put a cover page on
a one-page document, but all TPS reports require new coversheets. The call to_pdfDrawPageFrame() frames
the page with a header and footer that includes the pedigree name, date and time the report was created, and the page
number.

if titlepage:
if reporttitle == ’’:

reporttitle = ’meanMetricBy Report for Pedigree\n%s’ \
% (pedobj.kw[’pedname’])

_pdfCreateTitlePage(canv, _pdfSettings, reporttitle, reportauthor)
_pdfDrawPageFrame(canv, _pdfSettings)

The largest chunk of code inpdfInbreedingByYear() is dedicated to looping over the input dictionary,results,
and writing its contents to text objects. If you want to change the typeface for the rendered text, you need to make
the appropriate changes to all calls tocanv.setFont("Times-Bold", 12). The ReportLab documentation
includes a discussion of available typefaces.

canv.setFont("Times-Bold", 12)
tx = canv.beginText(_pdfSettings[’_pdfCalcs’][’_left_margin’],

_pdfSettings[’_pdfCalcs’][’_top_margin’] - 0.5 * \
_pdfSettings[’_pdfCalcs’][’_unit’])

Every printed report will have a section of code in which the input is processed and written to text objects. In this case,
the code loops over the key-and-value pairs inresults, determines the width of the key, and creates a string with the
proper spacing between the key and its value. That string is then written to atx.textLine() object.

This is where the actual content is written to a text object that
will be displayed on a canvas.
for _k, _v in results.iteritems():

if len(str(_k)) <= 14:
_line = ’\t%s:\t\t%s’ % (_k, _v)

else:
_line = ’\t%s:\t%s’ % (_k, _v)

tx.textLine(_line)

ReportLab’s text objects do not automatically paginate themselves. If you write, say, ten pages of material to a text
object and render it without manually paginating the objectyou’re going to get a single page of chopped-off text. The
following section of code is where the actual pagination occurs, so careful cutting-and-pasting should make pagination
seamless.

10.3. Creating a Custom Printed Report 75

Paginate the document if the contents of a textLine are longer than one page.
if tx.getY() < _pdfSettings[’_pdfCalcs’][’_bottom_margin’] + \

0.5 * _pdfSettings[’_pdfCalcs’][’_unit’]:
canv.drawText(tx)
canv.showPage()
_pdfDrawPageFrame(canv, _pdfSettings)
canv.setFont(’Times-Roman’, 12)
tx = canv.beginText(_pdfSettings[’_pdfCalcs’][’_left_margin’],

_pdfSettings[’_pdfCalcs’][’_top_margin’] -
0.5 * _pdfSettings[’_pdfCalcs’][’_unit’])

Once we’re done writing our text to text objects we need to draw the text object on the canvas and make the canvas
visible. If you omit this step, perhaps because of the kind ofhorrible cutting-and-pasting accident to which I am prone,
your PDF will not be written to a file.

if tx:
canv.drawText(tx)
canv.showPage()

canv.save()

While PyPedal does not yet have any standard reports that include graphics, ReportLab does support adding graphics,
such as a pedigree drawing, to a canvas. Interested readers should refer to the ReportLab documentation.

76 Chapter 10. Report Generation

CHAPTER

ELEVEN

Implementing New Features

First, solve the problem. Then, write the code. — John Johnson

11.1 Overview

In this chapter, an example of wil be provided of how to extendPyPedal by creating a user-defined routine. New
routines may implement a new measure of genetic diversity, extend the graphics module, add a new report, or group a
series of actions into a single convenient routine.

One of the appealing features of PyPedal is its easy extensibility. In this section, we will demonstrate how to add a
user-written module to PyPedal. The filepyp_template.py that is distributed with PyPedal is a skeleton that can
be used to help you get started writing your custom module(s). You should also look at the source code of the standard
modules, particularly if there is already a routine that does something similar to what you would like to do, to see if
you can jump-start your project by reusing code.

11.1.1 Defining the Problem

Before you open your editor and begin writing code you need toclearly define your problem. Answering a few
questions can help you do this:

• What output do I want from my routine?

• What calculations do I need to perform?

• What input do I need to give my routine in order to perform those calculations?

• Are there any PyPedal routines that already do something similar?

The last question is as important as the others — if there is already a PyPedal routine that does similar calculations
you can use it as a starting point. Code reuse is a great idea.

The problem that will motivate the rest of this section sounds very tricky, but is not really so bad because we are
going to reuse a lot of code. I want to create a routine for drawing pedigrees that color nodes (animals) based on their
importance as measured by their connectedness to other animals in the pedigree. After a brief review of the contents
of the Module Template in Section11.2, I will present a detailed solution to this problem in Section 11.3.

77

11.2 Module Template

The file ‘pyp template.py’ is a skeleton that can be used to get started writing a custommodule. The first thing you
should do is save a copy of ‘pyp template.py’ with your working module name; we will use the filename ‘pyp jbc.py’
for the following example. You should also fill-in the moduleheader so that it contains your name, e-mail address, etc.
The version number of your module does not have to match that of the main PyPedal distribution, and is only used as
an aid to the programmer.

###
NAME: pyp_jbc.py
VERSION: 1.0.0 (16NOVEMBER2005)
AUTHOR: John B. Cole, PhD (jcole@aipl.arsusda.gov)
LICENSE: LGPL
###
FUNCTIONS:
get_color_32()
color_pedigree()
draw_colored_pedigree()
###

The imports section of the template includesimport statements for all of the standard PyPedal modules. There’sno
harm in including all of them in your module, but it’s good practice to include only the modules you need. You should
always include thelogging module because it’s needed for communicating with the log file. Forpyp_jbc I am
including only thepyp_graphics, pyp_network, andpyp_utils modules.

##
pyp_jbc provides tools for enhanced pedigree drawing.
##
import logging
from PyPedal import pyp_graphics
from PyPedal import pyp_network
from PyPedal import pyp_utils

There is a very sketchy function prototype included in the template. It is probably enough for you to get started if you
have a little experience programming in Python. If you don’thave any experience programming in Python you should
be able to get up-and-running with a little trial-and-errorand some study of PyPedal source. You should always write a
comment block similar to that attached toyourFunctionName() for each of your functions. This comment block
is recognized by PythonDoc, a tool for automatically generating program documentation. Parameters are the inputs
that you send to a function, return is a description of the function’s output, and defreturn is the type of output that is
returned, such as a list, dictionary, integer, or tuple.

78 Chapter 11. Implementing New Features

##
yourFunctionName() <description of what function does>
@param <parameter_name> <parameter description>
@return <description of returned value(s)
@defreturn <type of returned data, e.g., ’dictionary’ or ’list’>
def yourFunctionName(pedobj):

try:
Do something here
logging.info(’pyp_template/yourFunctionName() did something.’)
return a value/dictionary/etc.

except:
logging.error(’pyp_template/yourFunctionName() encountered a problem.’)
return 0

11.3 Solving the Problem

The measure of connectedness I am going to use for coloring the pedigree is the proportion of animals in the pedigree
that are descended from each animal in the pedigree. In orderto do this we need to do the following:

1. Compute the proportion of animals in the pedigree that aredescended from each animal in the pedigree; the
values will be stored in a dictionary keyed by animal IDs.

2. Map the proportion of descendants from decimal values on the interval (0,1) to RGB triples.

3. Use the RGB triples to set the fill color for nodes.

There is not an existing function for the first item, but thereis a function in thepyp_network module,find_-
descendants(), for identifying all of the descendants of an animal. We can use the length of the list of descendants
and the number of animals in the pedigree to calculate the proportion of animals in the pedigree descended from that
animal. Thecolor_pedigree() function creates a dictionary and loops over the pedigree tocompute the pro-
porions. It also callsdraw_colored_pedigree(), which is a modified version ofpyp_graphics.draw_-
pedigree(), to draw the pedigree with colored nodes.

11.3. Solving the Problem 79

##
color_pedigree() forms a graph object from a pedigree object and
determines the proportion of animals in a pedigree that are
descendants of each animal in the pedigree. The results are used
to feed draw_colored_pedigree().
@param pedobj A PyPedal pedigree object.
@return A 1 for success and a 0 for failure.
@defreturn integer
def color_pedigree(pedobj):

_pedgraph = pyp_network.ped_to_graph(pedobj)
_dprop = {}
Walk the pedigree and compute proportion of animals in the
pedigree that are descended from each animal.
for _p in pedobj.pedigree:

_dcount = pyp_network.find_descendants(_pedgraph,_p.animalID,[])
if len(_dcount) < 1:

_dprop[_p.animalID] = 0.0
else:

_dprop[_p.animalID] = float(len(_dcount)) / \
float(pedobj.metadata.num_records)

del(_pedgraph)
_gfilename = ’%s_colored’ % \

(pyp_utils.string_to_table_name(pedobj.metadata.name))
draw_colored_pedigree(pedobj, _dprop, gfilename=_gfilename,

gtitle=’Colored Pedigree’, gorient=’p’, gname=1, gdirec=’’,
gfontsize=12, garrow=0, gtitloc=’b’)

pyp_graphics.draw_pedigree()was copied intopyp_jbc, renamed todraw_colored_pedigree(),
and modified to draw colored nodes. Two basic changes were made to accomplish that: the function was altered to
accept a dictionary of weights to be used for coloring, and code for actually coloring the nodes was written. The first
change was simply the addition of a new required parameter,shading, to the function header. The second step required
a little more work. For each animal in the pedigree, the descendant proportion is looked-up in the shading dictionary,
the proportion is passed toget_color_32() and converted into an RGB triple, and thefilled andcolor
attributes for the node representing that animal are set. The hardest part of creating this routine was determining where
changes should be made when modifyingpyp_graphics.draw_pedigree().

80 Chapter 11. Implementing New Features

##
draw_colored_pedigree() uses the pydot bindings to the graphviz library
to produce a directed graph of your pedigree with paths of inheritance
as edges and animals as nodes. If there is more than one generation in
the pedigree as determind by the ’gen’ attributes of the animals in the
pedigree, draw_pedigree() will use subgraphs to try and group animals in
the same generation together in the drawing. Nodes will be colored
based on the number of outgoing connections (number of offspring).
@param pedobj A PyPedal pedigree object.
@param shading A dictionary mapping animal IDs to levels that will be
used to color nodes.
...
@return A 1 for success and a 0 for failure.
@defreturn integer
def draw_colored_pedigree(pedobj, shading, gfilename=’pedigree’, \

gtitle=’My_Pedigree’, gformat=’jpg’, gsize=’f’, gdot=’1’, gorient=’l’, \
gdirec=’’, gname=0, gfontsize=10, garrow=1, gtitloc=’b’, gtitjust=’c’):

from pyp_utils import string_to_table_name
_gtitle = string_to_table_name(gtitle)
...
If we do not have any generations, we have to draw a less-nice graph.
if len(gens) <= 1:

for _m in pedobj.pedigree:
...
_an_node = pydot.Node(_node_name)
...
_color = get_color_32(shading[_m.animalID],0.0,1.0)
_an_node.set_style(’filled’)
_an_node.set_color(_color)
...

Otherwise we can draw a nice graph.
...

...
for _m in pedobj.pedigree:

...
_an_node = pydot.Node(_node_name)
...
_color = get_color_32(shading[_m.animalID])
_an_node.set_style(’filled’)
_an_node.set_color(_color)
...

Theget_color_32() function is a modified version ofpyp_graphics.rmuller_get_color() that re-
turns RGB triplets of the form ‘#1a2b3c’, which are required by the program that renders the graphs.This is another
example of how code reuse can reduce development time.

11.3. Solving the Problem 81

##
get_color_32() Converts a float value to one of a continuous range of colors
using recipe 9.10 from the Python Cookbook.
@param a Float value to convert to a color.
@param cmin Minimum value in array (0.0 by default).
@param cmax Maximum value in array (1.0 by default).
@return An RGB triplet.
@defreturn integer
def get_color_32(a,cmin=0.0,cmax=1.0):

try:
a = float(a-cmin)/(cmax-cmin)

except ZeroDivisionError:
a=0.5 # cmax == cmin

blue = min((max((4*(0.75-a),0.)),1.))
red = min((max((4*(a-0.25),0.)),1.))
green = min((max((4*math.fabs(a-0.5)-1.,0)),1.))
_r = ’%2x’ % int(255*red)
if _r[0] == ’ ’:

_r = ’0%s’ % _r[1]
_g = ’%2x’ % int(255*green)
if _g[0] == ’ ’:

_g = ’0%s’ % _g[1]
_b = ’%2x’ % int(255*blue)
if _b[0] == ’ ’:

_b = ’0%s’ % _b[1]
_triple = ’#%s%s%s’ % (_r,_g,_b)
return _triple

This change will probably be to rolled intormuller_get_color() so that the form of the return triplet is user-
selectable.

The program ‘new jbc.py’ demonstrates use of the newpyp_jbc.color_pedigree() routine:

options = {}
options[’renumber’] = 1
options[’sepchar’] = ’\t’
options[’missing_parent’] = ’animal0’

if __name__==’__main__’:
options[’pedfile’] = ’new_ids2.ped’
options[’pedformat’] = ’ASD’
options[’pedname’] = ’Boichard Pedigree’
example = pyp_newclasses.loadPedigree(options)
pyp_jbc.color_pedigree(example)

The resulting colorized pedigree can be seen in Figure11.1. Each of the nodes is colored according to the proportion
of animals in the complete pedigree descended from a given animal. Clearly there is still room for improvement; for
example, there is no key provided in the image so that you can see how colors map to proportions. Implementation of
a key is left as an exercise for the reader.

82 Chapter 11. Implementing New Features

Colored Pedigree

animal1

animal9

animal2

animal5

animal3

animal4

animal10animal7

animal6

animal11 animal12 animal13

animal8

Figure 11.1: Colorized version of the pedigree in Figure9.2

11.3. Solving the Problem 83

11.4 Contributing Code to PyPedal

If you would like to contribute your code back to PyPedal please note that it must be licensed under version 2.1 or
any later version of the GNU Lesser General Public License. The GNU LGPL has all of the restrictions of the GPL
except that you may use the code at compile time without the derivative work becoming a GPL work. This allows
the use of the code in proprietary works. You must also complete and return the joint copyright assignment form
distributed aspypedal_copyright_assignment.pdf before any contributions can be accepted and merged
into the development tree.

Contributors are asked to document their code using the documentation comments recognized by PythonDoc 2.0 or
later (http://effbot.org/zone/pythondoc.htm). PythonDoc is used to generates API documentation in
HTML and other formats based on descriptions in Python source files. You are also strongly encouraged to provide
example programs abd datasets with any code submissions.

84 Chapter 11. Implementing New Features

http://effbot.org/zone/pythondoc.htm

CHAPTER

TWELVE

Glossary

Just as birds have wings, man has language. — George Henry Lewes

This chapter provides a glossary of terms.1

ancestor loss coefficientSee: pedigree completeness.

coefficient of ancestral inbreedingThe probability that an individual jas inherited an allele that has undergone in-
breeding in the past at least once.

coefficient of inbreeding Probability that two alleles selected at random are identical by descent.

coefficient of partial inbreeding The probability that the alleles at an arbitrary locus in an individual are identitical-
by-descent, and that the alleles were derived from an allelein a particular founder.

coefficient of relationship Proportion of genes that two individuals share on average.

effective ancestor numberThe number of equally-contributing ancestors, not necessarily founders, needed to pro-
duce a population with the heterozygosity of the studied population (Boichard, Maignel, and Verrier 1997).

effective founder number The number of equally-contributing founders needed to produce a population with the
heterozygosity of the studied population (Lacy 1989).

effective population sizeThe effective population size is the size of an ideal population that would lose heterozygos-
ity at a rate equal to that of the studied population (Falconer and MacKay 1996).

founder An animal with unknown parents that is assumed to be unrelated to all other founders.

internal report A PyPedal() report that is intended for use by other PyPedal() procedures, such as plotting routines,
and not for printing.

numerator relationship matrix Matrix of additive genetic covariances among the animals ina population.

pedigree A PyPedal pedigree consists of a Python list containing instances of PyPedalNewAnimal() objects.

pedigree completenessThe proportion of known pedigree information for an arbitrary number of generations.

renumbering Many calculations require that the animals in a pedigree be ordered from oldest to youngest, with sires
and dams preceding offspring, and renumbered starting with1. This is a computational necessity, and results in
an animal’s ID (animalID) being changed to reflect that animal’s order in the pedigree. All animals have their
original IDs stored in theiroriginalName attribute.

reordering The process of arranging animals in a pedigree so that parents appear before their offspring; this is a
necessary step in renumbering a pedigree.

1Please let me know of any additions to this list which you feelwould be helpful.

85

86

APPENDIX

A

Example Programs

Either I’ve invented a whole new logic or, ahem, I’m not playing with a full deck. — Philip K. Dick

A number of example programs are distributed with PyPedal. TableA.1 provides the name of each file, the configura-
tion and pedigree files used by those programs, and a brief description of the concepts and techniques presented.

Table A.1: Example programs distributed with PyPedal.

Program Name Configuration
File

Pedigree File Description

new amatrix.py new amatrix.ini new amatrix.ped Create, save, load, and view information about NewA-
Matrix objects

new classes.py new classes.ini boichard2.ped ???
new db.py new db.ini hartlandclark.ped Loading a pedigree into SQLite and creating a report

of mean inbreeeding by birth year
new doug.py new doug.ini doug.ped Reading a pedigree in which names are strings, draw-

ing pedigrees
new format.py new format.ini boichard2a.ped Reading a pedigree using the ‘skip column’ format

code (Z), printing pedigree metadata
new graphics.py new graphics.ini boichard2.ped Use of a number of routines frompyp_graphics
new hartl.py new hartl.ini hartlandclark.ped Demonstrates use ofpyp_graphics.draw_-

pedigree()
new ids.py new ids.ini new ids2.ped Demonstrates reading tab-delimited files, using strings

as animal IDs, overriding the default missing parent
code, printing animal records

new inbreeding.py new inbreed-
ing.ini

new renumber-
ing.ped

Calculating coefficients of inbreeding

new inbreeding2.py new inbreed-
ing2.ini,
new inbreed-
ing2multiple.ini

new renum-
bering.ped,
horse.ped

Advanced .ini file techniques, computations on ex-
tremely inbred animals, calculation of summary statis-
tics for coefficients of relationship

continued on next page

87

Program Name Configuration
File

Pedigree File Description

new jbc.py new jbc.ini new ids2.ped Usingpyp_jbc.color_pedigree() to produce
a weighted, colored pedigree

new lacy.py new lacy.ini,
new format.ini

new lacy.ped,
boichard2a.ped

Calculating effective ancestor and founder numbers

new methods.py new format.ini boichard2a.ped Use of pyp_metrics.related_animals()
andpyp_metrics.common_ancestors()

new networkx.py new net-
workx.ini

generations.ped Use of [algebraic] graph functions

new options.py new options.ini new lacy.ped Use of the configuration files
new renumbering.py new renumber-

ing.ini
new renumber-
ing.ped

Renumbering a pedigree, calculating inbreeding, pedi-
gree drawing

new reporting.py new reporting.ini new renumber-
ing.ped

Use of reporting functions

new simulate.py new simulate.ini None Demonstrates how to create a random pedigree and
produce a drawing of that pedigree.

88 Appendix A. Example Programs

APPENDIX

B

GEDCOM File Handling

PyPedal is capable of importing from, and exporting to, GEDCOM 5.5 files using a subset of data record and tag
types from the standard (Table??). Most of the information that can be exchanged in GEDCOM files has no direct
use in PyPedal, so important information from PyPedal’s point-of-view is not lost. However, it’s important to note
thatPyPedal’s GEDCOM import and export is lossy! This means that information in a GEDCOM file is lost when
importing the file, and data from PyPedal pedigrees is lost when exporting. There are many free and commercial
packages for doing human genealogy that take full advantageof GEDCOM, so you might want to look at one if you
need more advanced GEDCOM support than PyPedal provides.

Table B.1: GEDCOM 5.5 data records and tags imported by PyPedal.

Data Record Type Supported Tags Description3

Fam Record FAM Alphanumeric with underscores; formed from parent
IDs

HUSB Sire, if known
WIFE Dam, if known
CHIL Pointer to IndividualRecord (one record per child)

Individual Record INDI Individual ID
SEX M, F, or U (unknown)
NAME Individual’s name, if known
BIRT Indicates that a birth date or year follows
DATE Birth date or birth year, if known
FAMC Pointer to family to which this individual belongs
FAMS Pointer to family in which this individual is a parent

The list of recognized tags is hard-coded in a list namedknown tagsin pyp_io.load_from_gedcom().

Table B.2: GEDCOM 5.5 data records and tags exported by PyPedal.

Data Record Type Supported Tags Description6

Header HEAD —
SOUR PYPEDAL

continued on next page

89

Data Record Type Supported Tags Description7

VERS V2.0
CORP USDA-ARS-BA-ANRI-AIPL
DEST PYPEDAL
DATE Timestamp from time of file creation
FILE Filename provided by user
GEDC —
VERS VERS 5.5
FORM Lineage-Linked
CHAR ASCII

Fam Record FAM Alphanumeric with underscores; formed from parent
IDs

HUSB Sire, if known
WIFE Dam, if known
CHIL Pointer to IndividualRecord (one record per child)

Individual Record INDI Individual ID
SEX M, F, or U (unknown)
NAME Individual’s name, if known
BIRT Indicates that a birth date or year follows
DATE Birth date or birth year, if known
FAMC Pointer to family to which this individual belongs
FAMS Pointer to family in which this individual is a parent

Some tags have slightly different connotatios in PyPedal than in GEDCOM. For example, in human genealogy mar-
riages are important events, but that is not the case in animal pedigrees. PyPedal creates family records only for unique
mating pairs, and marriage information is lost when importing a GEDCOM file. Similarly, no marriage information
is exported, and you will not see any family records containing only HUSB and WIFE tags. Founders (animals with
both parents unknown) will have individual records but no family records. The default birth year used by PyPedal is
1900; if you do not override that value then individuals withbirth years of 1900 will not have BIRT/DATE tags written
to their individual record. The same is true of default birthdates (01011900).

Importation is done by reading the GEDCOM file, parsing out the supported tags into “family” and “individual”, and
using Python dictionaries (hash tables) to map everything down to individual records. Those individual records are
then written to a file, the pedigree format string and pedfile variables are updated for the new file. That file is then
loaded automatically. The downside is that you end up with two copies of each pedigree file, but disc space is cheap.
I won’t add an option for automatic deletion of the original GEDCOM file becuase of the lossiness of the import
procedure.

The export process is uncoupled from the import process. Youcan export any pedigree that PyPedal can read as a
GEDCOM file regardless of the original source. Perhaps some human types will be interested in some of the calcula-
tions that PyPedal can do, or perhaps a dog breeder will do something unexpected, such as exporting to GEDCOM so
that they can use GRAMPS or something like that to manipulatetheir data. Who knows. Anyway, PyPedal supports
two-way data flow.

90 Appendix B. GEDCOM File Handling

BIBLIOGRAPHY

Ballou, J. D. (1997). Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations.
Journal of Heredity 88, 169–178.

Boichard, D., L. Maignel, and E. Verrier (1997). The value ofusing probabilities of gene origin to measure genetic
variability in a population.Genetics Selection Evolution 29, 5–23.

Caballero, A. and M. A. Toro (2000). Interrelations betweeneffective population size and other pedigree tools for
the management of conserved populations.Genetical Research (Cambridge) 75, 331–343.

Cassell, B. G., V. Adamec, and R. E. Pearson (2003). Effect ofincomplete pedigrees on estimates of inbreeding
and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys.Journal of
Dairy Science 86, 2967–2976.

Cole, J. B. (2007). PyPedal: a computer program for pedigreeanalysis.Computers and Electronics in Agricul-
ture 57, 107–113.

Cole, J. B., D. E. Franke, and E. A. Leighton (2004). Population structure of a colony of dog guides.Journal of
Animal Science 82, 2906–2912.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2003). Introduction to Algorithms, Second Edition.
Englewood Cliffs, NJ: Prentice-Hall.

Falconer, D. S. and F. C. MacKay (1996).Introduction to Quantitative Genetics(4th ed.). Longman.

Gulisija, D. and J. F. Crow (2007). Inferring purging from pedigree data.Evolution 61, 1043–1051.

Gulisija, D., D. Gianola, K. A. Weigel, and M. A. Toro (2006).Between-founder heterogeneity in inbreeding
depression for production in Jersey cows.Livestock Science 104, 244–253.

Henderson, C. R. (1976). A simple method for computing the inverse of a numerator relationship matrix used in
prediction of breeding values.Biometrics 32, 69–83.

Lacy, R. C. (1989). Analysis of founder representation in pedigrees: founder equivalents and founder genome
equivalents.Zoo Biology. 8, 111–123.

Lacy, R. C., G. Alaks, and A. Walsh (1996). Hierarchical analysis of inbreeding depression inPeromyscus poliono-
tus. Evolution 50, 2187–2200.

MacCluer, J. W., J. L. VandeBerg, B. Read, and O. A. Ryder (1986). Pedigree analysis by computer simulation.
Zoo Biology. 5, 147–160.

Pattie, W. (1965). Selection for weaning weight in Merino sheep.J. Agric. Exp. Animl. Husb. 5, 353–360.

Quaas, R. L. (1976). Computing the diagonal elements and inverse of a large numerator relationship matrix.Bio-
metrics 32, 949–953.

Roughsedge, T., S. Brotherstone, and P. M. Visscher (1999).Quantifying genetic contributions to a dairy cattle
population using pedigree analysis.Livestock Production Science 60, 359–369.

91

Suwanlee, S., R. Baumung, J. Sölkner, and I. Curik (2007). Evaluation of ancestral inbreeding coefficients: Ballou’s
formula versus gene dropping.Conservation Genetics 8, 489–495.

Toro, M. A., J. Rodriganez, L. Silio., and C. Rodriguez (2000). Genealogical analysis of a closed herd of black
hairless Iberian pigs.Conservation Biology 14.

Wiggans, G. R., P. M. Van Raden, and J. Zuurbier (1995). Calculation and use of inbreeding coefficients for genetic
evaluation of United States dairy cattle.Journal of Dairy Science 78, 1584–1590.

Wright, S. (1922). Coefficients of inbreeding and relationship. Amer. Nat. 56, 330–338.

Wright, S. (1931). Evolution in Mendelian populations.Genetics 16, 97–159.

Young, C. W. and A. J. Seykora (1996). Estimates of inbreeding and relationship among registered Holstein females
in the United States.Journal of Dairy Science 79, 502–505.

92 Bibliography

INDEX

Acknowledgments,7
ancestor loss coefficient,52

column delimiter,19
computational details,49

ancestral inbreeding,50
effective ancestor number,51
effective founder number,51
founder genome equivalents,51
generation coefficients,50
inbreeding and related measures,49
partial inbreeding,50
pedigree completeness,52

configuration file,14
configuration files,18

Dict4Ini, 18
Disclaimer,7

environment variables
PATH, 11
PYTHONPATH,11

example programs,87

GEDCOM files,89
graphics,63

drawing line graphs,67
drawing pedigrees,63
visualizing relationship matrices,67

how do I
basic tasks,53

load a pedigree,53
load multiple pedigrees,53
load tab-delimited pedigree,55
renumber a pedigree,54
turn off output,54

calculate genetic variation,55
coefficients of inbreeding,55

contribute a HOWTO,61
databases and reports,56

load a pedigree,56
update pedigree table,56

miscellaneous,59
export NRM to a file,59
export NRM to Octave,59
load a GEDCOM pedigree,60
load a pedigree from a string,60
save to GEDCOM pedigree,60

pedigrees as graphs,57
graph to file,59
graph to pedigree,58
pedigree from graph file,58
pedigree to graph,57

ID mapping,48
input,26

databases,26
GEDCOM files,27
graph objects,26
integrity checks,26
text files,27
text streams,28

installation,9
extensions,9
installation from source,11
installation on Cygwin,12
installation on Linux,10
installation on Windows,11

environment variables,11
Python Enthought Edition,11
SQLite,11

testing the installation,12
interacting with PyPedal,13

interactively,13
programmatically,13

internal reports,72

93

license,i
logging,21

measures of genetic variation,48

new features,77
contributing code,84
defining the problem,77
module template,78

function prototype,78
header,78
imports,78

solving the problem,79

objects,13
options,15

list, 16
output,28

databases,28
GEDCOM files,29
graph objects,29
text files,29
text streams,29

PATH, 11
pedigree files,19
pedigree format codes,19

list, 20
pedigree simulation,22
pedsource,28, 60
program structure,13
PyGraphviz,11
PyPedal objects,37

AMatrix objects,45
Animal objects,37

LightAnimal, 40
NewAnimal,37
SimAnimal,41

Metadata objects,43
Pedigree objects,42

PYTHONPATH,11

renumbering pedigrees,21
animal identification,21

reordering and renumbering,47
report generation,71

creating custom internal reports,72
creating custom printed reports,74
three generation pedigrees,72

savegedcom,60

working with pedigrees,31

inbreeding and relationships,32
matings,34
relatives,35

94 Index

	Introduction
	Implemented Features
	Where to get information and code
	Acknowledgments
	Disclaimer

	Installing PyPedal
	Overview of installation
	Testing the Python installation
	Installing PyPedal
	Testing the PyPedal Installation

	High-Level Overview
	Interacting with PyPedal
	The PyPedal Object Model
	Program Structure
	Options
	Pedigree Files
	Renumbering a Pedigree
	Logging
	Simulating Pedigrees

	Input and Output
	Overview
	Input
	Output

	Working with Pedigrees
	Overview
	Inbreeding and Relationships
	Matings
	Relatives

	Using PyPedal Objects
	Animal Objects
	The NewPedigree Class
	The PedigreeMetadata Class
	The NewAMatrix Class

	Methodology
	Reordering and Renumbering
	Animal Identification and Cross-References
	Measures of Genetic Variation
	Computational Details

	HOWTOs
	Basic Tasks
	Calculating Measures of Genetic Variation
	Databases and Report Generation
	Pedigrees as Graphs
	Miscellaneous
	Contribute a HOWTO

	Graphics
	PyPedal Graphics

	Report Generation
	Overview
	Creating a Custom Internal Report
	Creating a Custom Printed Report

	Implementing New Features
	Overview
	Module Template
	Solving the Problem
	Contributing Code to PyPedal

	Glossary
	Appendices
	Example Programs
	GEDCOM File Handling

