Time-Evolving Block Decimation (TEBD) is a new method for efficiently simulating the dynamics of entangled quantum many-body systems. It is especially suited to one-dimensional systems governed by a Hamiltonian made of local interactions.

Open Source TEBD is a package, written in Fortran 95, which allows one to simulate the entangled quantum dynamics of a one-dimensional system governed by a Hamiltonian made of local interactions using TEBD. Expectation values and correlation functions, as well as entanglement measures and entropies, can be calculated. By propagating in imaginary time, TEBD can also be used to find the ground state of a given Hamiltonian. The code supports arbitrary internal degrees of freedom, and has been optimized to conserve total particle number. Accompanying the code is a user's guide which provides background on the theoretical and conceptual foundations of TEBD, manpages, case studies of well-known hamiltonians, and exercises.

Project Samples

Project Activity

See All Activity >

Categories

Simulation

Follow Time-Evolving Block Decimation

Time-Evolving Block Decimation Web Site

You Might Also Like
Top-Rated Free CRM Software Icon
Top-Rated Free CRM Software

216,000+ customers in over 135 countries grow their businesses with HubSpot

HubSpot is an AI-powered customer platform with all the software, integrations, and resources you need to connect your marketing, sales, and customer service. HubSpot's connected platform enables you to grow your business faster by focusing on what matters most: your customers.
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Time-Evolving Block Decimation!

Additional Project Details

Intended Audience

Science/Research

Registered

2013-12-29