Time-Evolving Block Decimation (TEBD) is a new method for efficiently simulating the dynamics of entangled quantum many-body systems. It is especially suited to one-dimensional systems governed by a Hamiltonian made of local interactions.

Open Source TEBD is a package, written in Fortran 95, which allows one to simulate the entangled quantum dynamics of a one-dimensional system governed by a Hamiltonian made of local interactions using TEBD. Expectation values and correlation functions, as well as entanglement measures and entropies, can be calculated. By propagating in imaginary time, TEBD can also be used to find the ground state of a given Hamiltonian. The code supports arbitrary internal degrees of freedom, and has been optimized to conserve total particle number. Accompanying the code is a user's guide which provides background on the theoretical and conceptual foundations of TEBD, manpages, case studies of well-known hamiltonians, and exercises.

Project Samples

Project Activity

See All Activity >

Categories

Simulation

Follow Time-Evolving Block Decimation

Time-Evolving Block Decimation Web Site

Other Useful Business Software
Outgrown Windows Task Scheduler? Icon
Outgrown Windows Task Scheduler?

Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
Download Free Tool
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Time-Evolving Block Decimation!

Additional Project Details

Intended Audience

Science/Research

Registered

2013-12-29