
GLFW

Reference Manual

API version 2.7
November 8, 2012

c©2002-2006 Marcus Geelnard
c©2006-2010 Camilla Berglund

Summary

This document is primarily a function reference manual for the GLFW API. For a description of how to
use GLFW you should refer to the GLFW Users Guide.

Trademarks

OpenGL and IRIX are registered trademarks of Silicon Graphics, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corporation.
Mac OS is a registered trademark of Apple Computer, Inc.
Linux is a registered trademark of Linus Torvalds.
FreeBSD is a registered trademark of Wind River Systems, Inc.
Solaris is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of The Open Group.
X Window System is a trademark of The Open Group.
POSIX is a trademark of IEEE.
Truevision, TARGA and TGA are registered trademarks of Truevision, Inc.

All other trademarks mentioned in this document are the property of their respective owners.

i

Contents

1 Introduction 1

2 GLFW Operation Overview 2
2.1 The GLFW Window . 2
2.2 The GLFW Event Loop . 2
2.3 Callback Functions . 3
2.4 Threads . 3

3 Function Reference 5
3.1 GLFW Initialization and Termination . 5

3.1.1 glfwInit . 5
3.1.2 glfwTerminate . 6
3.1.3 glfwGetVersion . 6

3.2 Window Handling . 8
3.2.1 glfwOpenWindow . 8
3.2.2 glfwOpenWindowHint . 9
3.2.3 glfwCloseWindow . 12
3.2.4 glfwSetWindowCloseCallback . 12
3.2.5 glfwSetWindowTitle . 13
3.2.6 glfwSetWindowSize . 14
3.2.7 glfwSetWindowPos . 14
3.2.8 glfwGetWindowSize . 15
3.2.9 glfwSetWindowSizeCallback . 16
3.2.10 glfwIconifyWindow . 16
3.2.11 glfwRestoreWindow . 17
3.2.12 glfwGetWindowParam . 17
3.2.13 glfwSwapBuffers . 19
3.2.14 glfwSwapInterval . 19
3.2.15 glfwSetWindowRefreshCallback . 20

3.3 Video Modes . 22
3.3.1 glfwGetVideoModes . 22
3.3.2 glfwGetDesktopMode . 23

ii

3.4 Input Handling . 24
3.4.1 glfwPollEvents . 24
3.4.2 glfwWaitEvents . 24
3.4.3 glfwGetKey . 25
3.4.4 glfwGetMouseButton . 27
3.4.5 glfwGetMousePos . 28
3.4.6 glfwSetMousePos . 28
3.4.7 glfwGetMouseWheel . 29
3.4.8 glfwSetMouseWheel . 29
3.4.9 glfwSetKeyCallback . 30
3.4.10 glfwSetCharCallback . 31
3.4.11 glfwSetMouseButtonCallback . 31
3.4.12 glfwSetMousePosCallback . 32
3.4.13 glfwSetMouseWheelCallback . 33
3.4.14 glfwGetJoystickParam . 34
3.4.15 glfwGetJoystickPos . 35
3.4.16 glfwGetJoystickButtons . 35

3.5 Timing . 37
3.5.1 glfwGetTime . 37
3.5.2 glfwSetTime . 37
3.5.3 glfwSleep . 38

3.6 Image and Texture Loading . 39
3.6.1 glfwReadImage . 39
3.6.2 glfwReadMemoryImage . 40
3.6.3 glfwFreeImage . 41
3.6.4 glfwLoadTexture2D . 41
3.6.5 glfwLoadMemoryTexture2D . 43
3.6.6 glfwLoadTextureImage2D . 45

3.7 OpenGL Extension Support . 47
3.7.1 glfwExtensionSupported . 47
3.7.2 glfwGetProcAddress . 47
3.7.3 glfwGetGLVersion . 48

3.8 Threads . 50
3.8.1 glfwCreateThread . 50
3.8.2 glfwDestroyThread . 51
3.8.3 glfwWaitThread . 51
3.8.4 glfwGetThreadID . 52

3.9 Mutexes . 53
3.9.1 glfwCreateMutex . 53
3.9.2 glfwDestroyMutex . 53
3.9.3 glfwLockMutex . 54
3.9.4 glfwUnlockMutex . 54

3.10 Condition Variables . 55

iii

3.10.1 glfwCreateCond . 55
3.10.2 glfwDestroyCond . 55
3.10.3 glfwWaitCond . 56
3.10.4 glfwSignalCond . 56
3.10.5 glfwBroadcastCond . 57

3.11 Miscellaneous . 58
3.11.1 glfwEnable/glfwDisable . 58
3.11.2 glfwGetNumberOfProcessors . 59

A GLFW Compatibility 62
A.1 ICCCM and EWMH Conformance . 62
A.2 GLX Extensions . 63
A.3 WGL Extensions . 63
A.4 OpenGL 3.0+ on Mac OS X . 64

iv

List of Tables

3.1 Targets for glfwOpenWindowHint . 10
3.2 Window parameters for glfwGetWindowParam . 18
3.3 Special key identifiers . 26
3.4 Valid mouse button identifiers . 42
3.5 Joystick parameters for glfwGetJoystickParam . 42
3.6 Flags for functions loading image data into textures . 42
3.7 Flags for glfwLoadTexture2D . 42
3.8 Tokens for glfwEnable/glfwDisable . 61

v

GLFW Reference Manual API version 2.7 Page 1/64

Chapter 1

Introduction

GLFW is a portable API (Application Program Interface) that handles operating system specific tasks
related to OpenGL R© programming. While OpenGL R© in general is portable, easy to use and often
results in tidy and compact code, the operating system specific mechanisms that are required to set up
and manage an OpenGL R© window are quite the opposite. GLFW tries to remedy this by providing the
following functionality:

• Opening and managing an OpenGL R© context and its associated window.

• Keyboard, mouse and joystick input.

• A high precision timer.

• Multi-threading support.

• Support for querying and using OpenGL R© extensions.

• Basic Targa image loading support.

All this functionality is implemented as a set of easy-to-use functions, which makes it possible to write
an OpenGL R© application framework in just a few lines of code. The GLFW API looks and behaves the
same on all supported platforms, making it very simple to port GLFW based OpenGL R© applications to
a variety of platforms.

Currently supported platforms are:

• Microsoft Windows R© (32-bit only).

• Unix R© or Unix-like systems running resonably a modern version of the X Window SystemTM1

e.g. Linux R©, FreeBSD R© and SolarisTM(32- and 64-bit).

1X11.app on Mac OS X is not supported due to its incomplete implementation of GLXFBConfigs

GLFW Reference Manual API version 2.7 Page 2/64

Chapter 2

GLFW Operation Overview

2.1 The GLFW Window

GLFW only supports having one window open at a time. The window can be either a normal desktop
window or a fullscreen window. The latter is completely undecorated, without window borders, and
covers the entire monitor. With a fullscreen window, it is also possible to select which video mode to
use.

When a window is opened, an OpenGL R© rendering context is created and attached to the entire client
area of the window. When the window is closed, the OpenGL R© rendering context is detached and
destroyed.

Through a window it is possible to receive user input in the form of keyboard and mouse input. User
input is exposed through the GLFW API primarily via a set of callback functions. Also, GLFW stores
most user input as internal state that can be queried through different GLFW API functions (for instance
it is possible to query the position of the mouse cursor with the glfwGetMousePos function).

As for user input, it is possible to receive information about window state changes, such as window
resize or close events, through callback functions. It is also possible to query some kinds of information
about the window information using GLFW API functions.

2.2 The GLFW Event Loop

The GLFW event loop is an open loop, which means that it is up to the programmer to design the loop.
Events are processed by calling specific GLFW functions, which in turn query the system for new input
and window events and reports these events back to the program through callback functions.

The programmer decides when to call the event processing functions and when to abort the event loop.

In pseudo language, a typical event loop might look like this:

GLFW Reference Manual API version 2.7 Page 3/64

� �
repeat until window is closed
{
poll events
draw OpenGL graphics

}� �
There are two ways to handle events in GLFW:

• Block the event loop while waiting for new events.

• Poll for new events and continue the loop regardless of whether there are any new events or not.

The first method is useful for interactive applications that do not need to refresh the OpenGL R© display
unless the user interacts with the application through user input. Typical applications are CAD software
and other kinds of editors.

The second method is useful for applications that need to refresh the OpenGL R© display constantly,
regardless of user input, such as games, demos, 3D animations, screen savers and so on.

2.3 Callback Functions

Using callback functions can be a good method for receiving up to date information about window state
and user input. When a window has been opened, it is possible to register custom callback functions
that will be called when certain events occur.

Callback functions are called from any of the event polling functions glfwPollEvents, glfwWaitEvents
or glfwSwapBuffers.

Callback functions should only be used to gather information. Since the callback functions are called
from within the internal GLFW event polling loops, they should not call any GLFW functions that might
result in considerable GLFW state changes, nor stall the event polling loop for a lengthy period of time.

In other words, most or all OpenGL R© rendering should be called from the main application event loop,
not from any of the GLFW callback functions. Also, the only GLFW functions that may be safely
called from callback functions are the different Get functions (e.g. glfwGetKey, glfwGetTime,
glfwGetWindowParam etc.).

2.4 Threads

GLFW has functions for creating threads, which means that it is possible to make multi-threaded
applications with GLFW. It is recommended that all OpenGL R© functions and all GLFW functions
except those relating to threading and time are called only from the main thread, i.e. the one from which

GLFW Reference Manual API version 2.7 Page 4/64

main is called. Additional threads should primarily be used for CPU heavy tasks or for managing other
resources such as file or sound I/O.

It should be noted that the current implementation of GLFW is not thread safe, so you should never call
GLFW functions from different threads. 1

1The thread management functions are of course thread safe.

GLFW Reference Manual API version 2.7 Page 5/64

Chapter 3

Function Reference

3.1 GLFW Initialization and Termination

Before any other GLFW functions can be used, GLFW must be initialized to ensure proper
functionality, and before a program terminates GLFW should be terminated in order to free allocated
resources, memory, etc.

3.1.1 glfwInit

C language syntax� �
int glfwInit(void)� �
Parameters
none

Return values
If the function succeeds, GL_TRUE is returned.
If the function fails, GL_FALSE is returned.

Description
The glfwInit function initializes GLFW. No other GLFW functions may be called before this function
has succeeded.

GLFW Reference Manual API version 2.7 Page 6/64

Notes
This function may take several seconds to complete on some systems, while on other systems it may
take only a fraction of a second to complete.

This function registers a function calling glfwTerminate with the atexit facility of the C library.

On Mac OS X, this function will change the current directory of the application to the
Contents/Resources subdirectory of the application’s bundle, if present. For more information on
bundles, see the Bundle Programming Guide provided by Apple.

3.1.2 glfwTerminate

C language syntax� �
void glfwTerminate(void)� �
Parameters
none

Return values
none

Description
This function terminates GLFW. Among other things it closes the window, if open, and kills any
running threads. This function should be called before a program exits.

3.1.3 glfwGetVersion

C language syntax� �
void glfwGetVersion(int *major, int *minor, int *rev)� �
Parameters

major
Pointer to an integer that will hold the major version number.

minor
Pointer to an integer that will hold the minor version number.

rev
Pointer to an integer that will hold the revision.

GLFW Reference Manual API version 2.7 Page 7/64

Return values
The function returns the major and minor version numbers and the revision for the currently linked
GLFW library.

Description
This function returns the GLFW library version.

GLFW Reference Manual API version 2.7 Page 8/64

3.2 Window Handling

The primary purpose of GLFW is to provide a simple interface to OpenGL R© context creation and
window management. GLFW supports one window at a time, which can be either a normal desktop
window or a fullscreen window.

3.2.1 glfwOpenWindow

C language syntax� �
int glfwOpenWindow(int width, int height, int redbits,

int greenbits, int bluebits, int alphabits, int depthbits,
int stencilbits, int mode)� �

Parameters

width
The width of the window. If width is zero, it will be calculated as width = 4

3height, if height is
not zero. If both width and height are zero, width will be set to 640.

height
The height of the window. If height is zero, it will be calculated as height = 3

4width, if width is
not zero. If both width and height are zero, height will be set to 480.

redbits, greenbits, bluebits
The number of bits to use for each color component of the color buffer (0 means default color
depth). For instance, setting redbits=5, greenbits=6 and bluebits=5 will create a 16-bit color
buffer, if possible.

alphabits
The number of bits to use for the alpha channel of the color buffer (0 means no alpha channel).

depthbits
The number of bits to use for the depth buffer (0 means no depth buffer).

stencilbits
The number of bits to use for the stencil buffer (0 means no stencil buffer).

mode
Selects which type of OpenGL R© window to use. mode must be either GLFW_WINDOW, which
will generate a normal desktop window, or GLFW_FULLSCREEN, which will generate a
window which covers the entire screen. When GLFW_FULLSCREEN is selected, the video
mode will be changed to the resolution that closest matches the width and height parameters.

GLFW Reference Manual API version 2.7 Page 9/64

Return values
If the function succeeds, GL_TRUE is returned.
If the function fails, GL_FALSE is returned.

Description
This function opens a window that best matches the parameters given to the function. How well the
resulting window matches the desired window depends mostly on the available hardware and OpenGL R©

drivers. In general, selecting a fullscreen mode has better chances of generating a close match of buffers
and channel sizes than does a normal desktop window, since GLFW can freely select from all the
available video modes. A desktop window is normally restricted to the video mode of the desktop.

Notes
For additional control of window properties, see glfwOpenWindowHint.

In fullscreen mode the mouse cursor is hidden by default and the screensaver is prohibited from
starting. In windowed mode the mouse cursor is visible and screensavers are allowed to start. To change
the visibility of the mouse cursor, use glfwEnable or glfwDisable with the argument
GLFW_MOUSE_CURSOR.

In order to determine the actual properties of an opened window, use glfwGetWindowParam and
glfwGetWindowSize (or glfwSetWindowSizeCallback).

On Microsoft Windows, if the executable has an icon resource named GLFW_ICON, it will be set as
the icon for the window. If no such icon is present, the IDI_WINLOGO icon will be used instead.

On Mac OS X the GLFW window has no icon, but programs using GLFW will use the application
bundle’s icon. Also, the first time a window is opened the menu bar is populated with common
commands like Hide, Quit and About. The (minimal) about dialog uses information from the
application’s bundle. For more information on bundles, see the Bundle Programming Guide provided
by Apple.

For information on how the availability of different platform-specific extensions affect the behavior of
this function, see appendix A.

3.2.2 glfwOpenWindowHint

C language syntax� �
void glfwOpenWindowHint(int target, int hint)� �

GLFW Reference Manual API version 2.7 Page 10/64

Name Default Description
GLFW_REFRESH_RATE 0 Vertical monitor refresh rate in Hz (only used

for fullscreen windows). Zero means system
default.

GLFW_ACCUM_RED_BITS 0 Number of bits for the red channel of the ac-
cumulation buffer.

GLFW_ACCUM_GREEN_BITS 0 Number of bits for the green channel of the
accumulation buffer.

GLFW_ACCUM_BLUE_BITS 0 Number of bits for the blue channel of the ac-
cumulation buffer.

GLFW_ACCUM_ALPHA_BITS 0 Number of bits for the alpha channel of the
accumulation buffer.

GLFW_AUX_BUFFERS 0 Number of auxiliary buffers.
GLFW_STEREO GL_FALSE Specify if stereo rendering should be sup-

ported (can be GL_TRUE or GL_FALSE).
GLFW_WINDOW_NO_RESIZE GL_FALSE Specify whether the window can be resized

by the user (not used for fullscreen windows).
GLFW_FSAA_SAMPLES 0 Number of samples to use for the multisam-

pling buffer. Zero disables multisampling.
GLFW_OPENGL_VERSION_MAJOR 1 Major number of the desired minimum

OpenGL R© version.
GLFW_OPENGL_VERSION_MINOR 1 Minor number of the desired minimum

OpenGL R© version.
GLFW_OPENGL_FORWARD_COMPAT GL_FALSE Specify whether the OpenGL R© context

should be forward-compatible (i.e. disallow
legacy functionality). This should only be
used when requesting OpenGL R© version 3.0
or above.

GLFW_OPENGL_DEBUG_CONTEXT GL_FALSE Specify whether a debug context should be
created.

GLFW_OPENGL_PROFILE 0 The OpenGL R© profile the context
should implement, or zero to let the
system choose. Available profiles are
GLFW_OPENGL_CORE_PROFILE and
GLFW_OPENGL_COMPAT_PROFILE.

Table 3.1: Targets for glfwOpenWindowHint

GLFW Reference Manual API version 2.7 Page 11/64

Parameters

target
Can be any of the tokens in the table 3.1.

hint
An integer giving the value of the corresponding token (see table 3.1).

Return values
none

Description
This function sets additional properties for a window that is to be opened. For a hint to take effect, it
must be set before calling glfwOpenWindow. When glfwOpenWindow is called, regardless of
whether it succeeds, all window hints are reset to their default values.

Notes
All window hints are reset to their default values by each successful call to glfwInit and by each call to
glfwOpenWindow, whether successful or not.

In order to determine the actual properties of an opened window, use glfwGetWindowParam (after the
window has been opened).

GLFW_STEREO is a hard constraint. If stereo rendering is requested, but no stereo rendering capable
pixel formats / framebuffer configs are available, glfwOpenWindow will fail.

The GLFW_REFRESH_RATE hint should be used with caution. Most systems have default values for
monitor refresh rates that are optimal for the specific system. Specifying the refresh rate can override
these settings, which can result in suboptimal operation. The monitor may be unable to display the
resulting video signal, or in the worst case it may even be damaged!

The GLFW_WINDOW_NO_RESIZE hint applies only to manual resizing by the user. A window
created with this hint enabled can still be resized by the application by calling glfwSetWindowSize.

The GLFW_OPENGL_VERSION_MAJOR and GLFW_OPENGL_VERSION_MINOR hints specify
the OpenGL R© version that the created context must be compatible with, not the exact version to use. It
is therefore perfectly safe to use the default of version 1.1 for legacy code and you will still get
backwards-compatible contexts of version 3.0 and above when available.

To make the behavior of the above version hints consistent across both modern and legacy drivers,
glfwOpenWindow will fail if the modern creation mechanism (as specified in
WGL_ARB_create_context and GLX_ARB_create_context) is unavailable and the created context
is of a version lower than the one that was requested.

At the time of release, the exact meaning of what a "debug context" is (as created using the
GLFW_OPENGL_DEBUG_CONTEXT hint) has yet to be defined by the Khronos ARB WG.

GLFW Reference Manual API version 2.7 Page 12/64

For information on how the availability of different extensions affect the behavior of this function, see
appendix A.

For full details on the workings of the OpenGL R© version, forward-compatibility and debug hints, see
the specifications for WGL_ARB_create_context and GLX_ARB_create_context, respectively. The
relevant GLFW hints map very closely to their platform-specific counterparts.

3.2.3 glfwCloseWindow

C language syntax� �
void glfwCloseWindow(void)� �
Parameters
none

Return values
none

Description
This function closes an opened window and destroys the associated OpenGL R© context.

3.2.4 glfwSetWindowCloseCallback

C language syntax� �
void glfwSetWindowCloseCallback(GLFWwindowclosefun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called when a user requests that the window should be
closed, typically by clicking the window close icon (e.g. the cross in the upper right corner of a
window under Microsoft Windows), and on Mac OS X also when selecting Quit from the
application menu. The function should have the following C language prototype:

int GLFWCALL functionname(void);

Where functionname is the name of the callback function. The return value of the callback
function indicates wether or not the window close action should continue. If the function returns
GL_TRUE, the window will be closed. If the function returns GL_FALSE, the window will not
be closed.

GLFW Reference Manual API version 2.7 Page 13/64

If cbfun is NULL, any previously set callback function will be unset.

Return values
none

Description
This function sets the callback for window close events.

A window has to be opened for this function to have any effect.

Notes
Window close events are recorded continuously, but only reported when glfwPollEvents,
glfwWaitEvents or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) is called.

The OpenGL R© context is still valid when this function is called.

Note that the window close callback function is not called when glfwCloseWindow is called, but only
when the close request comes from the window manager.

Do not call glfwCloseWindow from a window close callback function. Close the window by returning
GL_TRUE from the function.

3.2.5 glfwSetWindowTitle

C language syntax� �
void glfwSetWindowTitle(const char *title)� �
Parameters

title
Pointer to a null terminated ISO 8859-1 (8-bit Latin 1) string that holds the title of the window.

Return values
none

Description
This function changes the title of the opened window.

Notes
The title property of a window is often used in situations other than for the window title, such as the title
of an application icon when it is in iconified state.

GLFW Reference Manual API version 2.7 Page 14/64

3.2.6 glfwSetWindowSize

C language syntax� �
void glfwSetWindowSize(int width, int height)� �
Parameters

width
Width of the window.

height
Height of the window.

Return values
none

Description
This function changes the size of an opened window. The width and height parameters denote the size
of the client area of the window (i.e. excluding any window borders and decorations).

If the window is in fullscreen mode, the video mode will be changed to a resolution that closest matches
the width and height parameters (the number of color bits will not be changed).

Notes
This function has no effect if the window is iconified.

The OpenGL R© context is guaranteed to be preserved after calling glfwSetWindowSize, even if the
video mode is changed.

This function is not affected by the value of the GLFW_WINDOW_NO_RESIZE hint.

3.2.7 glfwSetWindowPos

C language syntax� �
void glfwSetWindowPos(int x, int y)� �
Parameters

x
Horizontal position of the window, relative to the upper left corner of the desktop.

y
Vertical position of the window, relative to the upper left corner of the desktop.

GLFW Reference Manual API version 2.7 Page 15/64

Return values
none

Description
This function changes the position of an opened window. It does not have any effect on a fullscreen
window.

Notes
This function has no effect if the window is iconified.

The behaviour of this function on multi-monitor systems is ill-defined.

3.2.8 glfwGetWindowSize

C language syntax� �
void glfwGetWindowSize(int *width, int *height)� �
Parameters

width
Pointer to an integer that will hold the width of the window.

height
Pointer to an integer that will hold the height of the window.

Return values
The current width and height of the opened window is returned in the width and height parameters,
respectively.

Description
This function is used for determining the size of an opened window. The returned values are dimensions
of the client area of the window (i.e. excluding any window borders and decorations).

Notes
Even if the size of a fullscreen window does not change once the window has been opened, it does not
necessarily have to be the same as the size that was requested using glfwOpenWindow. Therefor it is
wise to use this function to determine the true size of the window once it has been opened.

GLFW Reference Manual API version 2.7 Page 16/64

3.2.9 glfwSetWindowSizeCallback

C language syntax� �
void glfwSetWindowSizeCallback(GLFWwindowsizefun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time the window size changes. The
function should have the following C language prototype:

void GLFWCALL functionname(int width, int height);

Where functionname is the name of the callback function, and width and height are the
dimensions of the window client area.

If cbfun is NULL, any previously set callback function will be unset.

Return values
none

Description
This function sets the callback for window size change events.

A window has to be opened for this function to have any effect.

Notes
Window size changes are recorded continuously, but only reported when glfwPollEvents,
glfwWaitEvents or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) is called.

When a callback function is set, it will be called with the current window size before this function
returns.

3.2.10 glfwIconifyWindow

C language syntax� �
void glfwIconifyWindow(void)� �
Parameters
none

GLFW Reference Manual API version 2.7 Page 17/64

Return values
none

Description
Iconify a window. If the window is in fullscreen mode, then the desktop video mode will be restored.

3.2.11 glfwRestoreWindow

C language syntax� �
void glfwRestoreWindow(void)� �
Parameters
none

Return values
none

Description
Restore an iconified window. If the window that is restored is in fullscreen mode, then the fullscreen
video mode will be restored.

3.2.12 glfwGetWindowParam

C language syntax� �
int glfwGetWindowParam(int param)� �
Parameters

param
A token selecting which parameter the function should return (see table 3.2).

Return values
The function returns the value the window parameter corresponding to the token param. Table 3.2 lists
the available tokens.

Description
This function is used for acquiring various properties of an opened window.

GLFW Reference Manual API version 2.7 Page 18/64

Name Description
GLFW_OPENED GL_TRUE if window is opened, else GL_FALSE.
GLFW_ACTIVE GL_TRUE if window has focus, else GL_FALSE.
GLFW_ICONIFIED GL_TRUE if window is iconified, else GL_FALSE.
GLFW_ACCELERATED GL_TRUE if window is hardware accelerated, else

GL_FALSE.
GLFW_RED_BITS Number of bits for the red color component.
GLFW_GREEN_BITS Number of bits for the green color component.
GLFW_BLUE_BITS Number of bits for the blue color component.
GLFW_ALPHA_BITS Number of bits for the alpha buffer.
GLFW_DEPTH_BITS Number of bits for the depth buffer.
GLFW_STENCIL_BITS Number of bits for the stencil buffer.
GLFW_REFRESH_RATE Vertical monitor refresh rate in Hz. Zero indicates an unknown

or a default refresh rate.
GLFW_ACCUM_RED_BITS Number of bits for the red channel of the accumulation buffer.
GLFW_ACCUM_GREEN_BITS Number of bits for the green channel of the accumulation

buffer.
GLFW_ACCUM_BLUE_BITS Number of bits for the blue channel of the accumulation

buffer.
GLFW_ACCUM_ALPHA_BITS Number of bits for the alpha channel of the accumulation

buffer.
GLFW_AUX_BUFFERS Number of auxiliary buffers.
GLFW_STEREO GL_TRUE if stereo rendering is supported, else GL_FALSE.
GLFW_WINDOW_NO_RESIZE GL_TRUE if the window cannot be resized by the user, else

GL_FALSE.
GLFW_FSAA_SAMPLES Number of multisampling buffer samples. Zero indicated mul-

tisampling is disabled.
GLFW_OPENGL_VERSION_MAJOR Major number of the actual version of the context.
GLFW_OPENGL_VERSION_MINOR Minor number of the actual version of the context.
GLFW_OPENGL_FORWARD_COMPAT GL_TRUE if the context is forward-compatible, else

GL_FALSE.
GLFW_OPENGL_DEBUG_CONTEXT GL_TRUE if the context is a debug context.
GLFW_OPENGL_PROFILE The profile implemented by the context, or zero.

Table 3.2: Window parameters for glfwGetWindowParam

GLFW Reference Manual API version 2.7 Page 19/64

Notes
GLFW_ACCELERATED is only supported under Windows. Other systems will always return
GL_TRUE. Under Windows, GLFW_ACCELERATED means that the OpenGL R© renderer is a 3rd
party renderer, rather than the fallback Microsoft software OpenGL R© renderer. In other words, it is not
a real guarantee that the OpenGL R© renderer is actually hardware accelerated.

GLFW_OPENGL_VERSION_MAJOR and GLFW_OPENGL_VERSION_MINOR always return the
same values as those returned by glfwGetGLVersion.

3.2.13 glfwSwapBuffers

C language syntax� �
void glfwSwapBuffers(void)� �
Parameters
none

Return values
none

Description
This function swaps the back and front color buffers of the window. If GLFW_AUTO_POLL_EVENTS
is enabled (which is the default), glfwPollEvents is called after swapping the front and back buffers.

Notes
In previous versions of GLFW, glfwPollEvents was called before buffer swap. This was changed in
order to decrease input lag but may affect code that relied on the former behavior.

3.2.14 glfwSwapInterval

C language syntax� �
void glfwSwapInterval(int interval)� �
Parameters

interval
Minimum number of monitor vertical retraces between each buffer swap performed by
glfwSwapBuffers. If interval is zero, buffer swaps will not be synchronized to the vertical
refresh of the monitor (also known as ’VSync off’).

GLFW Reference Manual API version 2.7 Page 20/64

Return values
none

Description
This function selects the minimum number of monitor vertical retraces that should occur between two
buffer swaps. If the selected swap interval is one, the rate of buffer swaps will never be higher than the
vertical refresh rate of the monitor. If the selected swap interval is zero, the rate of buffer swaps is only
limited by the speed of the software and the hardware.

Notes
This function will only have an effect on hardware and drivers that support user selection of the swap
interval. ATI drivers in particular have been known to ignore this setting.

3.2.15 glfwSetWindowRefreshCallback

C language syntax� �
void glfwSetWindowRefreshCallback(GLFWwindowrefreshfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called when the window client area needs to be
refreshed. The function should have the following C language prototype:

void GLFWCALL functionname(void);

Where functionname is the name of the callback function.

If cbfun is NULL, any previously set callback function will be unset.

Return values
none

Description
This function sets the callback for window refresh events, which occurs when any part of the window
client area has been damaged, and needs to be repainted (for instance, if a part of the window that was
previously occluded by another window has become visible).

A window has to be opened for this function to have any effect.

GLFW Reference Manual API version 2.7 Page 21/64

Notes
Window refresh events are recorded continuously, but only reported when glfwPollEvents,
glfwWaitEvents or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) is called.

Modern windowing systems using hardware compositing, such as Aqua, Aero and Compiz, very rarely
need to refresh the contents of windows, so the specified callback will very rarely be called on such
systems.

GLFW Reference Manual API version 2.7 Page 22/64

3.3 Video Modes

Since GLFW supports video mode changes when using a fullscreen window, it also provides
functionality for querying which video modes are supported on a system.

3.3.1 glfwGetVideoModes

C language syntax� �
int glfwGetVideoModes(GLFWvidmode *list, int maxcount)� �
Parameters

list
A vector of GLFWvidmode structures, which will be filled out by the function.

maxcount
Maximum number of video modes that list vector can hold.

Return values
The function returns the number of detected video modes (this number will never exceed maxcount).
The list vector is filled out with the video modes that are supported by the system.

Description
This function returns a list of supported video modes. Each video mode is represented by a
GLFWvidmode structure, which has the following definition:� �
typedef struct {

int Width, Height; // Video resolution
int RedBits; // Number of red bits
int GreenBits; // Number of green bits
int BlueBits; // Number of blue bits

} GLFWvidmode;� �
Notes
The returned list is sorted, first by color depth (RedBits+GreenBits+BlueBits), and then by
resolution (Width×Height), with the lowest resolution, fewest bits per pixel mode first.

GLFW Reference Manual API version 2.7 Page 23/64

3.3.2 glfwGetDesktopMode

C language syntax� �
void glfwGetDesktopMode(GLFWvidmode *mode)� �
Parameters

mode
Pointer to a GLFWvidmode structure, which will be filled out by the function.

Return values
The GLFWvidmode structure pointed to by mode is filled out with the desktop video mode.

Description
This function returns the desktop video mode in a GLFWvidmode structure. See glfwGetVideoModes
for a definition of the GLFWvidmode structure.

Notes
The color depth of the desktop display is always reported as the number of bits for each individual color
component (red, green and blue), even if the desktop is not using an RGB or RGBA color format. For
instance, an indexed 256 color display may report RedBits = 3, GreenBits = 3 and BlueBits = 2, which
adds up to 8 bits in total.

The desktop video mode is the video mode used by the desktop at the time the GLFW window was
opened, not the current video mode (which may differ from the desktop video mode if the GLFW
window is a fullscreen window).

GLFW Reference Manual API version 2.7 Page 24/64

3.4 Input Handling

GLFW supports three channels of user input: keyboard input, mouse input and joystick input.

Keyboard and mouse input can be treated either as events, using callback functions, or as state, using
functions for polling specific keyboard and mouse states. Regardless of which method is used, all
keyboard and mouse input is collected using window event polling.

Joystick input is asynchronous to the keyboard and mouse input, and does not require event polling for
keeping up to date joystick information. Also, joystick input is independent of any window, so a
window does not have to be opened for joystick input to be used.

3.4.1 glfwPollEvents

C language syntax� �
void glfwPollEvents(void)� �
Parameters
none

Return values
none

Description
This function is used for polling for events, such as user input and window resize events. Upon calling
this function, all window states, keyboard states and mouse states are updated. If any related callback
functions are registered, these are called during the call to glfwPollEvents.

Notes
glfwPollEvents is called implicitly from glfwSwapBuffers if GLFW_AUTO_POLL_EVENTS is
enabled (as it is by default). Thus, if glfwSwapBuffers is called frequently, which is normally the case,
there is no need to call glfwPollEvents.

3.4.2 glfwWaitEvents

C language syntax� �
void glfwWaitEvents(void)� �

GLFW Reference Manual API version 2.7 Page 25/64

Parameters
none

Return values
none

Description
This function is used for waiting for events, such as user input and window resize events. Upon calling
this function, the calling thread will be put to sleep until any event appears in the event queue. When
events are available, they will be processed just as they are processed by glfwPollEvents.

If there are any events in the queue when the function is called, the function will behave exactly like
glfwPollEvents (i.e. process all messages and then return, without blocking the calling thread).

Notes
It is guaranteed that glfwWaitEvents will wake up on any event that can be processed by
glfwPollEvents. However, GLFW receives many events that are only processed internally and the
function may behave differently on different systems. Do not make any assumptions about when or why
glfwWaitEvents will return.

3.4.3 glfwGetKey

C language syntax� �
int glfwGetKey(int key)� �
Parameters

key
A keyboard key identifier, which can be either an uppercase printable ISO 8859-1 (Latin 1)
character (e.g. ’A’, ’3’ or ’.’), or a special key identifier. Table 3.3 lists valid special key
identifiers.

Return values
The function returns GLFW_PRESS if the key is held down, or GLFW_RELEASE if the key is not
held down.

Description
This function queries the current state of a specific keyboard key. The physical location of each key
depends on the system keyboard layout setting.

GLFW Reference Manual API version 2.7 Page 26/64

Name Description
GLFW_KEY_SPACE Space
GLFW_KEY_ESC Escape
GLFW_KEY_Fn Function key n (n can be in the range 1..25)
GLFW_KEY_UP Cursor up
GLFW_KEY_DOWN Cursor down
GLFW_KEY_LEFT Cursor left
GLFW_KEY_RIGHT Cursor right
GLFW_KEY_LSHIFT Left shift key
GLFW_KEY_RSHIFT Right shift key
GLFW_KEY_LCTRL Left control key
GLFW_KEY_RCTRL Right control key
GLFW_KEY_LALT Left alternate function key
GLFW_KEY_RALT Right alternate function key
GLFW_KEY_LSUPER Left super key, WinKey, or command key
GLFW_KEY_RSUPER Right super key, WinKey, or command key
GLFW_KEY_TAB Tabulator
GLFW_KEY_ENTER Enter
GLFW_KEY_BACKSPACE Backspace
GLFW_KEY_INSERT Insert
GLFW_KEY_DEL Delete
GLFW_KEY_PAGEUP Page up
GLFW_KEY_PAGEDOWN Page down
GLFW_KEY_HOME Home
GLFW_KEY_END End
GLFW_KEY_KP_n Keypad numeric key n (n can be in the range 0..9)
GLFW_KEY_KP_DIVIDE Keypad divide (÷)
GLFW_KEY_KP_MULTIPLY Keypad multiply (×)
GLFW_KEY_KP_SUBTRACT Keypad subtract (−)
GLFW_KEY_KP_ADD Keypad add (+)
GLFW_KEY_KP_DECIMAL Keypad decimal (. or ,)
GLFW_KEY_KP_EQUAL Keypad equal (=)
GLFW_KEY_KP_ENTER Keypad enter
GLFW_KEY_KP_NUM_LOCK Keypad num lock
GLFW_KEY_CAPS_LOCK Caps lock
GLFW_KEY_SCROLL_LOCK Scroll lock
GLFW_KEY_PAUSE Pause key
GLFW_KEY_MENU Menu key

Table 3.3: Special key identifiers

GLFW Reference Manual API version 2.7 Page 27/64

Notes
The constant GLFW_KEY_SPACE is equal to 32, which is the ISO 8859-1 code for space. This is the
only named GLFW key identifier with a value in the ISO 8859-1 range.

Not all key codes are supported on all systems. Also, while some keys are available on some keyboard
layouts, they may not be available on other keyboard layouts.

For systems that do not distinguish between left and right versions of modifier keys (shift, alt and
control), the left version is used (e.g. GLFW_KEY_LSHIFT).

A window must be opened for the function to have any effect, and glfwPollEvents, glfwWaitEvents or
glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) must be called before any keyboard
events are recorded and reported by glfwGetKey.

3.4.4 glfwGetMouseButton

C language syntax� �
int glfwGetMouseButton(int button)� �
Parameters

button
A mouse button identifier, which can be one of the mouse button identifiers listed in table 3.4.

Return values
The function returns GLFW_PRESS if the mouse button is held down, or GLFW_RELEASE if the
mouse button is not held down.

Description
This function queries the current state of a specific mouse button.

Notes
A window must be opened for the function to have any effect, and glfwPollEvents, glfwWaitEvents or
glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) must be called before any mouse
button events are recorded and reported by glfwGetMouseButton.

GLFW_MOUSE_BUTTON_LEFT is equal to GLFW_MOUSE_BUTTON_1.
GLFW_MOUSE_BUTTON_RIGHT is equal to GLFW_MOUSE_BUTTON_2.
GLFW_MOUSE_BUTTON_MIDDLE is equal to GLFW_MOUSE_BUTTON_3.

GLFW Reference Manual API version 2.7 Page 28/64

3.4.5 glfwGetMousePos

C language syntax� �
void glfwGetMousePos(int *xpos, int *ypos)� �
Parameters

xpos
Pointer to an integer that will be set to the horizontal position of the mouse cursor.

ypos
Pointer to an integer that will be set to the vertical position of the mouse cursor.

Return values
The function returns the current mouse cursor position in xpos and ypos.

Description
This function returns the current mouse position. If the cursor is not hidden, the mouse position is the
cursor position, relative to the upper left corner of the window and with the Y-axis down. If the cursor is
hidden, the mouse position is a virtual absolute position, not limited to any boundaries except to those
implied by the maximum number that can be represented by a signed integer.

Notes
A window must be opened for the function to have any effect, and glfwPollEvents, glfwWaitEvents or
glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) must be called before any mouse
movements are recorded and reported by glfwGetMousePos.

3.4.6 glfwSetMousePos

C language syntax� �
void glfwSetMousePos(int xpos, int ypos)� �
Parameters

xpos
Horizontal position of the mouse.

ypos
Vertical position of the mouse.

GLFW Reference Manual API version 2.7 Page 29/64

Return values
none

Description
This function changes the position of the mouse. If the cursor is visible (not disabled), the cursor will be
moved to the specified position, relative to the upper left corner of the window client area and with the
Y-axis down. If the cursor is hidden (disabled), only the mouse position that is reported by GLFW is
changed.

3.4.7 glfwGetMouseWheel

C language syntax� �
int glfwGetMouseWheel(void)� �
Parameters
none

Return values
The function returns the current mouse wheel position.

Description
This function returns the current mouse wheel position. The mouse wheel can be thought of as a third
mouse axis, which is available as a separate wheel or up/down stick on some mice.

Notes
A window must be opened for the function to have any effect, and glfwPollEvents, glfwWaitEvents or
glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) must be called before any mouse
wheel movements are recorded and reported by glfwGetMouseWheel.

3.4.8 glfwSetMouseWheel

C language syntax� �
void glfwSetMouseWheel(int pos)� �
Parameters

pos
Position of the mouse wheel.

GLFW Reference Manual API version 2.7 Page 30/64

Return values
none

Description
This function changes the position of the mouse wheel.

3.4.9 glfwSetKeyCallback

C language syntax� �
void glfwSetKeyCallback(GLFWkeyfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time a key is pressed or released. The
function should have the following C language prototype:

void GLFWCALL functionname(int key, int action);

Where functionname is the name of the callback function, key is a key identifier, which is an
uppercase printable ISO 8859-1 character or a special key identifier (see table 3.3), and action is
either GLFW_PRESS or GLFW_RELEASE.

If cbfun is NULL, any previously set callback function will be unset.

Return values
none

Description
This function sets the callback for keyboard key events. The callback function is called every time the
state of a single key is changed (from released to pressed or vice versa). The reported keys are
unaffected by any modifiers (such as shift or alt) and each modifier is reported as a separate key.

A window has to be opened for this function to have any effect.

Notes
Keyboard key events are not intended for text input and many languages will not be able to be input
using it. Use Unicode character events for text input instead.

Keyboard events are recorded continuously, but only reported when glfwPollEvents, glfwWaitEvents
or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) is called.

GLFW Reference Manual API version 2.7 Page 31/64

3.4.10 glfwSetCharCallback

C language syntax� �
void glfwSetCharCallback(GLFWcharfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time a printable character is generated by
the keyboard. The function should have the following C language prototype:

void GLFWCALL functionname(int character, int action);

Where functionname is the name of the callback function, character is a Unicode (ISO 10646)
character, and action is either GLFW_PRESS or GLFW_RELEASE.

If cbfun is NULL, any previously set callback function will be unset.

Return values
none

Description
This function sets the callback for keyboard character events. The callback function is called every time
a key that results in a printable Unicode character is pressed or released. Characters are affected by
modifiers (such as shift or alt).

A window has to be opened for this function to have any effect.

Notes
Character events are recorded continuously, but only reported when glfwPollEvents, glfwWaitEvents
or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) is called.

Control characters such as tab and carriage return are not reported to the character callback function,
since they are not part of the Unicode character set. Use the key callback function for such events (see
glfwSetKeyCallback).

The Unicode character set supports character codes above 255, so never cast a Unicode character to an
eight bit data type (e.g. the C language ’char’ type) without first checking that the character code is less
than 256. Also note that Unicode character codes 0 to 255 are equal to ISO 8859-1 (Latin 1).

3.4.11 glfwSetMouseButtonCallback

C language syntax

GLFW Reference Manual API version 2.7 Page 32/64

� �
void glfwSetMouseButtonCallback(GLFWmousebuttonfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time a mouse button is pressed or released.
The function should have the following C language prototype:

void GLFWCALL functionname(int button, int action);

Where functionname is the name of the callback function, button is a mouse button identifier (see
table 3.4 on page 42), and action is either GLFW_PRESS or GLFW_RELEASE.

If cbfun is NULL, any previously set callback function will be unset.

Return values
none

Description
This function sets the callback for mouse button events.

A window has to be opened for this function to have any effect.

Notes
Mouse button events are recorded continuously, but only reported when glfwPollEvents,
glfwWaitEvents or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) is called.

GLFW_MOUSE_BUTTON_LEFT is equal to GLFW_MOUSE_BUTTON_1.
GLFW_MOUSE_BUTTON_RIGHT is equal to GLFW_MOUSE_BUTTON_2.
GLFW_MOUSE_BUTTON_MIDDLE is equal to GLFW_MOUSE_BUTTON_3.

3.4.12 glfwSetMousePosCallback

C language syntax� �
void glfwSetMousePosCallback(GLFWmouseposfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time the mouse is moved. The function
should have the following C language prototype:

void GLFWCALL functionname(int x, int y);

GLFW Reference Manual API version 2.7 Page 33/64

Where functionname is the name of the callback function, and x and y are the mouse coordinates
(see glfwGetMousePos for more information on mouse coordinates).

If cbfun is NULL, any previously set callback function will be unset.

Return values
none

Description
This function sets the callback for mouse motion events.

A window has to be opened for this function to have any effect.

Notes
Mouse motion events are recorded continuously, but only reported when glfwPollEvents,
glfwWaitEvents or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) is called.

When a callback function is set, it will be called with the current mouse coordinates before this function
returns.

3.4.13 glfwSetMouseWheelCallback

C language syntax� �
void glfwSetMouseWheelCallback(GLFWmousewheelfun cbfun)� �
Parameters

cbfun
Pointer to a callback function that will be called every time the mouse wheel is moved. The
function should have the following C language prototype:

void GLFWCALL functionname(int pos);

Where functionname is the name of the callback function, and pos is the mouse wheel position.

If cbfun is NULL, any previously set callback function will be unset.

Return values
none

GLFW Reference Manual API version 2.7 Page 34/64

Description
This function sets the callback for mouse wheel events.

A window has to be opened for this function to have any effect.

Notes
Mouse wheel events are recorded continuously, but only reported when glfwPollEvents,
glfwWaitEvents or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS enabled) is called.

When a callback function is set, it will be called with the current wheel position before this function
returns.

3.4.14 glfwGetJoystickParam

C language syntax� �
int glfwGetJoystickParam(int joy, int param)� �
Parameters

joy
A joystick identifier, which should be GLFW_JOYSTICK_n, where n is in the range 1 to 16.

param
A token selecting which parameter the function should return (see table 3.5).

Return values
The function returns different parameters depending on the value of param. Table 3.5 lists valid param
values, and their corresponding return values.

Description
This function is used for acquiring various properties of a joystick.

Notes
The joystick information is updated every time the function is called.

No window has to be opened for joystick information to be available.

GLFW Reference Manual API version 2.7 Page 35/64

3.4.15 glfwGetJoystickPos

C language syntax� �
int glfwGetJoystickPos(int joy, float *pos, int numaxes)� �
Parameters

joy
A joystick identifier, which should be GLFW_JOYSTICK_n, where n is in the range 1 to 16.

pos
An array that will hold the positional values for all requested axes.

numaxes
Specifies how many axes should be returned.

Return values
The function returns the number of actually returned axes. This is the minimum of numaxes and the
number of axes supported by the joystick. If the joystick is not supported or connected, the function will
return 0 (zero).

Description
This function queries the current position of one or more axes of a joystick. The positional values are
returned in an array, where the first element represents the first axis of the joystick (normally the X
axis). Each position is in the range -1.0 to 1.0. Where applicable, the positive direction of an axis is
right, forward or up, and the negative direction is left, back or down.

If numaxes exceeds the number of axes supported by the joystick, or if the joystick is not available, the
unused elements in the pos array will be set to 0.0 (zero).

Notes
The joystick state is updated every time the function is called, so there is no need to call glfwPollEvents
or glfwWaitEvents for joystick state to be updated.

Use glfwGetJoystickParam to retrieve joystick capabilities, such as joystick availability and number of
supported axes.

No window has to be opened for joystick input to be available.

3.4.16 glfwGetJoystickButtons

C language syntax

GLFW Reference Manual API version 2.7 Page 36/64

� �
int glfwGetJoystickButtons(int joy, unsigned char *buttons,

int numbuttons)� �
Parameters

joy
A joystick identifier, which should be GLFW_JOYSTICK_n, where n is in the range 1 to 16.

buttons
An array that will hold the button states for all requested buttons.

numbuttons
Specifies how many buttons should be returned.

Return values
The function returns the number of actually returned buttons. This is the minimum of numbuttons and
the number of buttons supported by the joystick. If the joystick is not supported or connected, the
function will return 0 (zero).

Description
This function queries the current state of one or more buttons of a joystick. The button states are
returned in an array, where the first element represents the first button of the joystick. Each state can be
either GLFW_PRESS or GLFW_RELEASE.

If numbuttons exceeds the number of buttons supported by the joystick, or if the joystick is not
available, the unused elements in the buttons array will be set to GLFW_RELEASE.

Notes
The joystick state is updated every time the function is called, so there is no need to call glfwPollEvents
or glfwWaitEvents for joystick state to be updated.

Use glfwGetJoystickParam to retrieve joystick capabilities, such as joystick availability and number of
supported buttons.

No window has to be opened for joystick input to be available.

GLFW Reference Manual API version 2.7 Page 37/64

3.5 Timing

3.5.1 glfwGetTime

C language syntax� �
double glfwGetTime(void)� �
Parameters
none

Return values
The function returns the value of the high precision timer. The time is measured in seconds, and is
returned as a double precision floating point value.

Description
This function returns the state of a high precision timer. Unless the timer has been set by the
glfwSetTime function, the time is measured as the number of seconds that have passed since glfwInit
was called.

Notes
The resolution of the timer depends on which system the program is running on.

3.5.2 glfwSetTime

C language syntax� �
void glfwSetTime(double time)� �
Parameters

time
Time (in seconds) that the timer should be set to.

Return values
none

Description
This function sets the current time of the high precision timer to the specified time. Subsequent calls to
glfwGetTime will be relative to this time. The time is given in seconds.

GLFW Reference Manual API version 2.7 Page 38/64

3.5.3 glfwSleep

C language syntax� �
void glfwSleep(double time)� �
Parameters

time
Time, in seconds, to sleep.

Return values
none

Description
This function puts the calling thread to sleep for the requested period of time. Only the calling thread is
put to sleep. Other threads within the same process can still execute.

Notes
There is usually a system dependent minimum time for which it is possible to sleep. This time is
generally in the range 1 ms to 20 ms, depending on thread sheduling time slot intervals etc. Using a
shorter time as a parameter to glfwSleep can give one of two results: either the thread will sleep for the
minimum possible sleep time, or the thread will not sleep at all (glfwSleep returns immediately). The
latter should only happen when very short sleep times are specified, if at all.

GLFW Reference Manual API version 2.7 Page 39/64

3.6 Image and Texture Loading

In order to aid loading of image data into textures, GLFW has basic support for loading images from
files and memory buffers.

3.6.1 glfwReadImage

C language syntax� �
int glfwReadImage(const char *name, GLFWimage *img, int flags)� �
Parameters

name
A null terminated ISO 8859-1 string holding the name of the file that should be read.

img
Pointer to a GLFWimage struct, which will hold the information about the loaded image (if the
read was successful).

flags
Flags for controlling the image reading process. Valid flags are listed in table 3.6

Return values
The function returns GL_TRUE if the image was loaded successfully. Otherwise GL_FALSE is
returned.

Description
This function reads an image from the file specified by the parameter name and returns the image
information and data in a GLFWimage structure, which has the following definition:� �
typedef struct {

int Width, Height; // Image dimensions
int Format; // OpenGL pixel format
int BytesPerPixel; // Number of bytes per pixel
unsigned char *Data; // Pointer to pixel data

} GLFWimage;� �
Width and Height give the dimensions of the image. Format specifies an OpenGL R© pixel format, which
can be GL_LUMINANCE or GL_ALPHA (for gray scale images), GL_RGB or GL_RGBA.
BytesPerPixel specifies the number of bytes per pixel. Data is a pointer to the actual pixel data.

By default the read image is rescaled to the nearest larger 2m × 2n resolution using bilinear
interpolation, if necessary, which is useful if the image is to be used as an OpenGL R© texture. This
behavior can be disabled by setting the GLFW_NO_RESCALE_BIT flag.

GLFW Reference Manual API version 2.7 Page 40/64

Unless the flag GLFW_ORIGIN_UL_BIT is set, the first pixel in img->Data is the lower left corner of
the image. If the flag GLFW_ORIGIN_UL_BIT is set, however, the first pixel is the upper left corner.

For single component images (i.e. gray scale), Format is set to GL_ALPHA if the flag
GLFW_ALPHA_MAP_BIT flag is set, otherwise Format is set to GL_LUMINANCE.

Notes
glfwReadImage supports the Truevision Targa version 1 file format (.TGA). Supported pixel formats
are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true color and 32-bit true color + alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

3.6.2 glfwReadMemoryImage

C language syntax� �
int glfwReadMemoryImage(const void *data, long size, GLFWimage *img,

int flags)� �
Parameters

data
The memory buffer holding the contents of the file that should be read.

size
The size, in bytes, of the memory buffer.

img
Pointer to a GLFWimage struct, which will hold the information about the loaded image (if the
read was successful).

flags
Flags for controlling the image reading process. Valid flags are listed in table 3.6

Return values
The function returns GL_TRUE if the image was loaded successfully. Otherwise GL_FALSE is
returned.

Description
This function reads an image file from the memory buffer specified by the parameter data and returns
the image information and data in a GLFWimage structure. For more information on the GLFW image
struct, see glfwReadImage.

GLFW Reference Manual API version 2.7 Page 41/64

Notes
glfwReadMemoryImage supports the Truevision Targa version 1 file format (.TGA). Supported pixel
formats are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true color and 32-bit true color +
alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

3.6.3 glfwFreeImage

C language syntax� �
void glfwFreeImage(GLFWimage *img)� �
Parameters

img
Pointer to a GLFWimage struct.

Return values
none

Description
This function frees any memory occupied by a loaded image, and clears all the fields of the
GLFWimage struct. Any image that has been loaded by the glfwReadImage function should be
deallocated using this function once the image is no longer needed.

3.6.4 glfwLoadTexture2D

C language syntax� �
int glfwLoadTexture2D(const char *name, int flags)� �
Parameters

name
An ISO 8859-1 string holding the name of the file that should be loaded.

flags
Flags for controlling the texture loading process. Valid flags are listed in table 3.7.

GLFW Reference Manual API version 2.7 Page 42/64

Name Description
GLFW_MOUSE_BUTTON_LEFT Left mouse button (button 1)
GLFW_MOUSE_BUTTON_RIGHT Right mouse button (button 2)
GLFW_MOUSE_BUTTON_MIDDLE Middle mouse button (button 3)
GLFW_MOUSE_BUTTON_n Mouse button n (n can be in the range 1..8)

Table 3.4: Valid mouse button identifiers

Name Return value
GLFW_PRESENT GL_TRUE if the joystick is connected, else GL_FALSE.
GLFW_AXES Number of axes supported by the joystick.
GLFW_BUTTONS Number of buttons supported by the joystick.

Table 3.5: Joystick parameters for glfwGetJoystickParam

Name Description
GLFW_NO_RESCALE_BIT Do not rescale image to closest 2m × 2n resolution
GLFW_ORIGIN_UL_BIT Specifies that the origin of the loaded image should be in

the upper left corner (default is the lower left corner)
GLFW_ALPHA_MAP_BIT Treat single component images as alpha maps rather than

luminance maps

Table 3.6: Flags for functions loading image data into textures

Name Description
GLFW_BUILD_MIPMAPS_BIT Automatically build and upload all mipmap levels
GLFW_ORIGIN_UL_BIT Specifies that the origin of the loaded image should be in

the upper left corner (default is the lower left corner)
GLFW_ALPHA_MAP_BIT Treat single component images as alpha maps rather than

luminance maps

Table 3.7: Flags for glfwLoadTexture2D

GLFW Reference Manual API version 2.7 Page 43/64

Return values
The function returns GL_TRUE if the texture was loaded successfully. Otherwise GL_FALSE is
returned.

Description
This function reads an image from the file specified by the parameter name and uploads the image to
OpenGL R© texture memory (using the glTexImage2D function).

If the GLFW_BUILD_MIPMAPS_BIT flag is set, all mipmap levels for the loaded texture are
generated and uploaded to texture memory.

Unless the flag GLFW_ORIGIN_UL_BIT is set, the origin of the texture is the lower left corner of the
loaded image. If the flag GLFW_ORIGIN_UL_BIT is set, however, the first pixel is the upper left
corner.

For single component images (i.e. gray scale), the texture is uploaded as an alpha mask if the flag
GLFW_ALPHA_MAP_BIT flag is set, otherwise it is uploaded as a luminance texture.

Notes
glfwLoadTexture2D supports the Truevision Targa version 1 file format (.TGA). Supported pixel
formats are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true color and 32-bit true color +
alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

The read texture is always rescaled to the nearest larger 2m × 2n resolution using bilinear interpolation,
if necessary, since OpenGL R© requires textures to have a 2m × 2n resolution.

If the GL_SGIS_generate_mipmap extension, which is usually hardware accelerated, is supported by
the OpenGL R© implementation it will be used for mipmap generation. Otherwise the mipmaps will be
generated by GLFW in software.

Since OpenGL R© 1.0 does not support single component alpha maps, alpha map textures are converted
to RGBA format under OpenGL R© 1.0 when the GLFW_ALPHA_MAP_BIT flag is set and the loaded
texture is a single component texture. The red, green and blue components are set to 1.0.

3.6.5 glfwLoadMemoryTexture2D

C language syntax� �
int glfwLoadMemoryTexture2D(const void *data, long size, int flags)� �

GLFW Reference Manual API version 2.7 Page 44/64

Parameters

data
The memory buffer holding the contents of the file that should be loaded.

size
The size, in bytes, of the memory buffer.

flags
Flags for controlling the texture loading process. Valid flags are listed in table 3.7.

Return values
The function returns GL_TRUE if the texture was loaded successfully. Otherwise GL_FALSE is
returned.

Description
This function reads an image from the memory buffer specified by the parameter data and uploads the
image to OpenGL R© texture memory (using the glTexImage2D function).

If the GLFW_BUILD_MIPMAPS_BIT flag is set, all mipmap levels for the loaded texture are
generated and uploaded to texture memory.

Unless the flag GLFW_ORIGIN_UL_BIT is set, the origin of the texture is the lower left corner of the
loaded image. If the flag GLFW_ORIGIN_UL_BIT is set, however, the first pixel is the upper left
corner.

For single component images (i.e. gray scale), the texture is uploaded as an alpha mask if the flag
GLFW_ALPHA_MAP_BIT flag is set, otherwise it is uploaded as a luminance texture.

Notes
glfwLoadMemoryTexture2D supports the Truevision Targa version 1 file format (.TGA). Supported
pixel formats are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true color and 32-bit true color
+ alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

The read texture is always rescaled to the nearest larger 2m × 2n resolution using bilinear interpolation,
if necessary, since OpenGL R© requires textures to have a 2m × 2n resolution.

If the GL_SGIS_generate_mipmap extension, which is usually hardware accelerated, is supported by
the OpenGL R© implementation it will be used for mipmap generation. Otherwise the mipmaps will be
generated by GLFW in software.

Since OpenGL R© 1.0 does not support single component alpha maps, alpha map textures are converted
to RGBA format under OpenGL R© 1.0 when the GLFW_ALPHA_MAP_BIT flag is set and the loaded
texture is a single component texture. The red, green and blue components are set to 1.0.

GLFW Reference Manual API version 2.7 Page 45/64

3.6.6 glfwLoadTextureImage2D

C language syntax� �
int glfwLoadTextureImage2D(GLFWimage *img, int flags)� �
Parameters

img
Pointer to a GLFWimage struct holding the information about the image to be loaded.

flags
Flags for controlling the texture loading process. Valid flags are listed in table 3.7.

Return values
The function returns GL_TRUE if the texture was loaded successfully. Otherwise GL_FALSE is
returned.

Description
This function uploads the image specified by the parameter img to OpenGL R© texture memory (using
the glTexImage2D function).

If the GLFW_BUILD_MIPMAPS_BIT flag is set, all mipmap levels for the loaded texture are
generated and uploaded to texture memory.

Unless the flag GLFW_ORIGIN_UL_BIT is set, the origin of the texture is the lower left corner of the
loaded image. If the flag GLFW_ORIGIN_UL_BIT is set, however, the first pixel is the upper left
corner.

For single component images (i.e. gray scale), the texture is uploaded as an alpha mask if the flag
GLFW_ALPHA_MAP_BIT flag is set, otherwise it is uploaded as a luminance texture.

Notes
glfwLoadTextureImage2D supports the Truevision Targa version 1 file format (.TGA). Supported
pixel formats are: 8-bit gray scale, 8-bit paletted (24/32-bit color), 24-bit true color and 32-bit true color
+ alpha.

Paletted images are translated into true color or true color + alpha pixel formats.

The read texture is always rescaled to the nearest larger 2m × 2n resolution using bilinear interpolation,
if necessary, since OpenGL R© requires textures to have a 2m × 2n resolution.

If the GL_SGIS_generate_mipmap extension, which is usually hardware accelerated, is supported by
the OpenGL R© implementation it will be used for mipmap generation. Otherwise the mipmaps will be
generated by GLFW in software.

GLFW Reference Manual API version 2.7 Page 46/64

Since OpenGL R© 1.0 does not support single component alpha maps, alpha map textures are converted
to RGBA format under OpenGL R© 1.0 when the GLFW_ALPHA_MAP_BIT flag is set and the loaded
texture is a single component texture. The red, green and blue components are set to 1.0.

GLFW Reference Manual API version 2.7 Page 47/64

3.7 OpenGL Extension Support

One of the great features of OpenGL R© is its support for extensions, which allow independent vendors to
supply non-standard functionality in their OpenGL R© implementations. As the mechanism for querying
extensions varies among systems, GLFW provides an operating system independent interface for
querying OpenGL R© version, extensions and entry points.

3.7.1 glfwExtensionSupported

C language syntax� �
int glfwExtensionSupported(const char *extension)� �
Parameters

extension
A null terminated ISO 8859-1 string containing the name of an OpenGL R© extension.

Return values
The function returns GL_TRUE if the extension is supported. Otherwise it returns GL_FALSE.

Description
This function does a string search in the list of supported OpenGL R© extensions to find if the specified
extension is listed.

Notes
An OpenGL R© context must be created before this function can be called (i.e. an OpenGL R© window
must have been opened with glfwOpenWindow).

In addition to checking for OpenGL R© extensions, GLFW also checks for extensions in the operating
system “glue API”, such as WGL extensions under Microsoft Windows and GLX extensions under the
X Window System.

3.7.2 glfwGetProcAddress

C language syntax� �
void * glfwGetProcAddress(const char *procname)� �

GLFW Reference Manual API version 2.7 Page 48/64

Parameters

procname
A null terminated ISO 8859-1 string containing the name of an OpenGL R© extension function.

Return values
The function returns the address of the specified OpenGL R© function, if it is available. Otherwise NULL
is returned.

Description
This function acquires the pointer to an OpenGL R© extension function. Some (but not all) OpenGL R©

extensions define new API functions, which are usually not available through normal linking. It is
therefore necessary to get access to those API functions at runtime.

Notes
An OpenGL R© context must be created before this function can be called (i.e. an OpenGL R© window
must have been opened with glfwOpenWindow).

Some systems do not support dynamic function pointer retrieval, in which case glfwGetProcAddress
will always return NULL.

3.7.3 glfwGetGLVersion

C language syntax� �
void glfwGetGLVersion(int *major, int *minor, int *rev)� �
Parameters

major
Pointer to an integer that will hold the major version number.

minor
Pointer to an integer that will hold the minor version number.

rev
Pointer to an integer that will hold the revision.

Return values
The function returns the major and minor version numbers and the revision for the currently used
OpenGL R© implementation.

GLFW Reference Manual API version 2.7 Page 49/64

Description
This function returns the OpenGL R© implementation version. This is a convenient function that parses
the version number information at the beginning of the string returned by calling
glGetString(GL_VERSION). The OpenGL R© version information can be used to determine
what functionality is supported by the used OpenGL R© implementation.

Notes
An OpenGL R© context must be created before this function can be called (i.e. an OpenGL R© window
must have been opened with glfwOpenWindow).

GLFW Reference Manual API version 2.7 Page 50/64

3.8 Threads

A thread is a separate execution path within a process. All threads within a process share the same
address space and resources. Threads execute in parallel, either virtually by means of time-sharing on a
single processor, or truly in parallel on multiple processors. Even on a multi-processor system,
time-sharing is employed in order to maximize processor utilization and to ensure fair scheduling.
GLFW provides an operating system independent interface to thread management.

3.8.1 glfwCreateThread

C language syntax� �
GLFWthread glfwCreateThread(GLFWthreadfun fun, void *arg)� �
Parameters

fun
A pointer to a function that acts as the entry point for the new thread. The function should have
the following C language prototype:

void GLFWCALL functionname(void *arg);

Where functionname is the name of the thread function, and arg is the user supplied argument
(see below).

arg
An arbitrary argument for the thread. arg will be passed as the argument to the thread function
pointed to by fun. For instance, arg can point to data that is to be processed by the thread.

Return values
The function returns a thread identification number if the thread was created successfully. This number
is always positive. If the function fails, a negative number is returned.

Description
This function creates a new thread, which executes within the same address space as the calling process.
The thread entry point is specified with the fun argument.

Once the thread function fun returns, the thread dies.

Notes
Even if the function returns a positive thread ID, indicating that the thread was created successfully, the
thread may be unable to execute, for instance if the thread start address is not a valid thread entry point.

GLFW Reference Manual API version 2.7 Page 51/64

3.8.2 glfwDestroyThread

C language syntax� �
void glfwDestroyThread(GLFWthread ID)� �
Parameters

ID
A thread identification handle, which is returned by glfwCreateThread or glfwGetThreadID.

Return values
none

Description
This function kills a running thread and removes it from the thread list.

Notes
This function is a very dangerous operation, which may interrupt a thread in the middle of an important
operation, and its use is discouraged. You should always try to end a thread in a graceful way using
thread communication, and use glfwWaitThread in order to wait for the thread to die.

3.8.3 glfwWaitThread

C language syntax� �
int glfwWaitThread(GLFWthread ID, int waitmode)� �
Parameters

ID
A thread identification handle, which is returned by glfwCreateThread or glfwGetThreadID.

waitmode
Can be either GLFW_WAIT or GLFW_NOWAIT.

Return values
The function returns GL_TRUE if the specified thread died after the function was called, or the thread
did not exist, in which case glfwWaitThread will return immediately regardless of waitmode. The
function returns GL_FALSE if waitmode is GLFW_NOWAIT, and the specified thread exists and is still
running.

GLFW Reference Manual API version 2.7 Page 52/64

Description
If waitmode is GLFW_WAIT, the function waits for a thread to die. If waitmode is GLFW_NOWAIT,
the function checks if a thread exists and returns immediately.

3.8.4 glfwGetThreadID

C language syntax� �
GLFWthread glfwGetThreadID(void)� �
Parameters
none

Return values
The function returns a thread identification handle for the calling thread.

Description
This function determines the thread ID for the calling thread. The ID is the same value as was returned
by glfwCreateThread when the thread was created.

GLFW Reference Manual API version 2.7 Page 53/64

3.9 Mutexes

Mutexes are used to securely share data between threads. A mutex object can only be owned by one
thread at a time. If more than one thread requires access to a mutex object, all but one thread will be put
to sleep until they get access to it.

3.9.1 glfwCreateMutex

C language syntax� �
GLFWmutex glfwCreateMutex(void)� �
Parameters
none

Return values
The function returns a mutex handle, or NULL if the mutex could not be created.

Description
This function creates a mutex object, which can be used to control access to data that is shared between
threads.

3.9.2 glfwDestroyMutex

C language syntax� �
void glfwDestroyMutex(GLFWmutex mutex)� �
Parameters

mutex
A mutex object handle.

Return values
none

Description
This function destroys a mutex object. After a mutex object has been destroyed, it may no longer be
used by any thread.

GLFW Reference Manual API version 2.7 Page 54/64

3.9.3 glfwLockMutex

C language syntax� �
void glfwLockMutex(GLFWmutex mutex)� �
Parameters

mutex
A mutex object handle.

Return values
none

Description
This function will acquire a lock on the selected mutex object. If the mutex is already locked by another
thread, the function will block the calling thread until it is released by the locking thread. Once the
function returns, the calling thread has an exclusive lock on the mutex. To release the mutex, call
glfwUnlockMutex.

3.9.4 glfwUnlockMutex

C language syntax� �
void glfwUnlockMutex(GLFWmutex mutex)� �
Parameters

mutex
A mutex object handle.

Return values
none

Description
This function releases the lock of a locked mutex object.

GLFW Reference Manual API version 2.7 Page 55/64

3.10 Condition Variables

Condition variables are used to synchronize threads. A thread can wait for a condition variable to be
signaled by another thread.

3.10.1 glfwCreateCond

C language syntax� �
GLFWcond glfwCreateCond(void)� �
Parameters
none

Return values
The function returns a condition variable handle, or NULL if the condition variable could not be
created.

Description
This function creates a condition variable object, which can be used to synchronize threads.

3.10.2 glfwDestroyCond

C language syntax� �
void glfwDestroyCond(GLFWcond cond)� �
Parameters

cond
A condition variable object handle.

Return values
none

Description
This function destroys a condition variable object. After a condition variable object has been destroyed,
it may no longer be used by any thread.

GLFW Reference Manual API version 2.7 Page 56/64

3.10.3 glfwWaitCond

C language syntax� �
void glfwWaitCond(GLFWcond cond, GLFWmutex mutex, double timeout)� �
Parameters

cond
A condition variable object handle.

mutex
A mutex object handle.

timeout
Maximum time to wait for the condition variable. The parameter can either be a positive time (in
seconds), or GLFW_INFINITY.

Return values
none

Description
This function atomically unlocks the mutex specified by mutex, and waits for the condition variable
cond to be signaled. The thread execution is suspended and does not consume any CPU time until the
condition variable is signaled or the amount of time specified by timeout has passed. If timeout is
GLFW_INFINITY, glfwWaitCond will wait forever for cond to be signaled. Before returning to the
calling thread, glfwWaitCond automatically re-acquires the mutex.

Notes
The mutex specified by mutex must be locked by the calling thread before entrance to glfwWaitCond.

A condition variable must always be associated with a mutex, to avoid the race condition where a thread
prepares to wait on a condition variable and another thread signals the condition just before the first
thread actually waits on it.

3.10.4 glfwSignalCond

C language syntax� �
void glfwSignalCond(GLFWcond cond)� �

GLFW Reference Manual API version 2.7 Page 57/64

Parameters

cond
A condition variable object handle.

Return values
none

Description
This function restarts one of the threads that are waiting on the condition variable cond. If no threads
are waiting on cond, nothing happens. If several threads are waiting on cond, exactly one is restarted,
but it is not specified which.

Notes
When several threads are waiting for the condition variable, which thread is started depends on
operating system scheduling rules, and may vary from system to system and from time to time.

3.10.5 glfwBroadcastCond

C language syntax� �
void glfwBroadcastCond(GLFWcond cond)� �
Parameters

cond
A condition variable object handle.

Return values
none

Description
This function restarts all the threads that are waiting on the condition variable cond. If no threads are
waiting on cond, nothing happens.

Notes
When several threads are waiting for the condition variable, the order in which threads are started
depends on operating system scheduling rules, and may vary from system to system and from time to
time.

GLFW Reference Manual API version 2.7 Page 58/64

3.11 Miscellaneous

3.11.1 glfwEnable/glfwDisable

C language syntax� �
void glfwEnable(int token)
void glfwDisable(int token)� �
Parameters

token
A value specifying a feature to enable or disable. Valid tokens are listed in table 3.8.

Return values
none

Description
glfwEnable is used to enable a certain feature, while glfwDisable is used to disable it. Below follows a
description of each feature.

GLFW_AUTO_POLL_EVENTS
When GLFW_AUTO_POLL_EVENTS is enabled, glfwPollEvents is automatically called each time
that glfwSwapBuffers is called, immediately after the buffer swap itself.

When GLFW_AUTO_POLL_EVENTS is disabled, calling glfwSwapBuffers will not result in a call to
glfwPollEvents. This can be useful if for example glfwSwapBuffers needs to be called from within a
callback function, since calling glfwPollEvents from a callback function is not allowed.

GLFW_KEY_REPEAT
When GLFW_KEY_REPEAT is enabled, the key and character callback functions are called repeatedly
when a key is held down long enough (according to the system key repeat configuration).

When GLFW_KEY_REPEAT is disabled, the key and character callback functions are only called once
when a key is pressed (and once when it is released).

GLFW_MOUSE_CURSOR
When GLFW_MOUSE_CURSOR is enabled, the mouse cursor is visible, and mouse coordinates are
relative to the upper left corner of the client area of the GLFW window. The coordinates are limited to
the client area of the window.

When GLFW_MOUSE_CURSOR is disabled, the mouse cursor is invisible, and mouse coordinates are
not limited to the drawing area of the window. It is as if the mouse coordinates are received directly
from the mouse, without being restricted or manipulated by the windowing system.

GLFW Reference Manual API version 2.7 Page 59/64

GLFW_STICKY_KEYS
When GLFW_STICKY_KEYS is enabled, keys which are pressed will not be released until they are
physically released and checked with glfwGetKey. This behavior makes it possible to catch keys that
were pressed and then released again between two calls to glfwPollEvents, glfwWaitEvents or
glfwSwapBuffers, which would otherwise have been reported as released. Care should be taken when
using this mode, since keys that are not checked with glfwGetKey will never be released. Note also that
enabling GLFW_STICKY_KEYS does not affect the behavior of the keyboard callback functionality.

When GLFW_STICKY_KEYS is disabled, the status of a key that is reported by glfwGetKey is always
the physical state of the key. Disabling GLFW_STICKY_KEYS also clears the sticky information for
all keys.

GLFW_STICKY_MOUSE_BUTTONS
When GLFW_STICKY_MOUSE_BUTTONS is enabled, mouse buttons that are pressed will not be
released until they are physically released and checked with glfwGetMouseButton. This behavior
makes it possible to catch mouse buttons which were pressed and then released again between two calls
to glfwPollEvents, glfwWaitEvents or glfwSwapBuffers (with GLFW_AUTO_POLL_EVENTS
enabled), which would otherwise have been reported as released. Care should be taken when using this
mode, since mouse buttons that are not checked with glfwGetMouseButton will never be released.
Note also that enabling GLFW_STICKY_MOUSE_BUTTONS does not affect the behavior of the
mouse button callback functionality.

When GLFW_STICKY_MOUSE_BUTTONS is disabled, the status of a mouse button that is reported
by glfwGetMouseButton is always the physical state of the mouse button. Disabling
GLFW_STICKY_MOUSE_BUTTONS also clears the sticky information for all mouse buttons.

GLFW_SYSTEM_KEYS
When GLFW_SYSTEM_KEYS is enabled, pressing standard system key combinations, such as
Alt+Tab under Windows, will give the normal behavior. Note that when Alt+Tab is issued under
Windows in this mode so that the GLFW application is deselected when GLFW is operating in
fullscreen mode, the GLFW application window will be minimized and the video mode will be set to
the original desktop mode. When the GLFW application is re-selected, the video mode will be set to the
GLFW video mode again.

When GLFW_SYSTEM_KEYS is disabled, pressing standard system key combinations will have no
effect, since those key combinations are blocked by GLFW. This mode can be useful in situations when
the GLFW program must not be interrupted (normally for games in fullscreen mode).

3.11.2 glfwGetNumberOfProcessors

C language syntax� �
int glfwGetNumberOfProcessors(void)� �

GLFW Reference Manual API version 2.7 Page 60/64

Parameters
none

Return values
The function returns the number of active processors in the system.

Description
This function determines the number of active processors in the system.

Notes
Systems with several logical processors per physical processor, also known as SMT (Symmetric
Multi-Threading) processors, will report the number of logical processors.

GLFW Reference Manual API version 2.7 Page 61/64

Name Controls Default
GLFW_AUTO_POLL_EVENTS Automatic event polling when

glfwSwapBuffers is called
Enabled

GLFW_KEY_REPEAT Keyboard key repeat Disabled
GLFW_MOUSE_CURSOR Mouse cursor visibility Enabled in win-

dowed mode. Dis-
abled in fullscreen
mode.

GLFW_STICKY_KEYS Keyboard key “stickiness” Disabled
GLFW_STICKY_MOUSE_BUTTONS Mouse button “stickiness” Disabled
GLFW_SYSTEM_KEYS Special system key actions Enabled

Table 3.8: Tokens for glfwEnable/glfwDisable

GLFW Reference Manual API version 2.7 Page 62/64

Appendix A

GLFW Compatibility

This chapter describes the various API extensions used by this version of GLFW. It lists what are
essentially implementation details, but which are nonetheless vital knowledge for developers wishing to
deploy their applications on machines with varied specifications.

Note that the information in this appendix is not a part of the API specification but merely list some of
the preconditions for certain parts of the API to function on a given machine. As such, any part of it
may change in future versions without this being considered a breaking API change.

A.1 ICCCM and EWMH Conformance

As GLFW uses Xlib, directly, without any intervening toolkit library, it has sole responsibility for
interacting well with the many and varied window managers in use on Unix-like systems. In order for
applications and window managers to work well together, a number of standards and conventions have
been developed that regulate behavior outside the scope of the X11 API; most importantly the
Inter-Client Communication Conventions Manual (ICCCM) and Extended Window Manager
Hints (EWMH) standards.

GLFW uses the ICCCM WM_DELETE_WINDOW protocol to intercept the user attempting to close
the GLFW window. If the running window manager does not support this protocol, the close callback
will never be called.

GLFW uses the EWMH _NET_WM_PING protocol, allowing the window manager notify the user
when the application has stopped responding, i.e. when it has ceased to process events. If the running
window manager does not support this protocol, the user will not be notified if the application locks up.

GLFW uses the EWMH _NET_WM_STATE protocol to tell the window manager to make the GLFW
window fullscreen. If the running window manager does not support this protocol, fullscreen windows
may not work properly. GLFW has a fallback code path in case this protocol is unavailable, but every
window manager behaves slightly differently in this regard.

GLFW Reference Manual API version 2.7 Page 63/64

A.2 GLX Extensions

The GLX API is used to create OpenGL R© contexts on Unix-like systems using the X Window System.

GLFW uses the GLXFBConfig API to enumerate and select framebuffer pixel formats. This requires
either GLX 1.3 or greater, or the GLX_SGIX_fbconfig extension. Where both are available, the SGIX
extension is preferred. If neither is available, GLFW will be unable to open windows.

GLFW uses the GLX_SGI_swap_control extension to provide vertical retrace synchronization (or
“vsync”). Where this extension is unavailable, calling glfwSwapInterval will have no effect.

GLFW uses the GLX_ARB_multisample extension to create contexts with multisampling
anti-aliasing. Where this extension is unavailable, the GLFW_FSAA_SAMPLES hint will have no
effect.

GLFW uses the GLX_ARB_create_context extension when available, even when creating OpenGL R©

contexts of version 2.1 and below. Where this extension is unavailable, the
GLFW_OPENGL_VERSION_MAJOR and GLFW_OPENGL_VERSION_MINOR hints will only be
partially supported, the GLFW_OPENGL_DEBUG_CONTEXT hint will have no effect, and setting the
GLFW_OPENGL_PROFILE or GLFW_FORWARD_COMPAT hints to a non-zero value will cause
glfwOpenWindow to fail.

GLFW uses the GLX_ARB_create_context_profile extension to provide support for context profiles.
Where this extension is unavailable, setting the GLFW_OPENGL_PROFILE hint to anything but zero
will cause glfwOpenWindow to fail.

A.3 WGL Extensions

The WGL API is used to create OpenGL R© contexts on Microsoft Windows and other implementations
of the Win32 API, such as Wine.

GLFW uses either the WGL_EXT_extension_string or the WGL_ARB_extension_string extension
to check for the presence of all other WGL extensions listed below. If both are available, the EXT one
is preferred. If neither is available, no other extensions are used and many GLFW features related to
context creation will have no effect or cause errors when used.

GLFW uses the WGL_EXT_swap_control extension to provide vertical retrace synchronization (or
“vsync”). Where this extension is unavailable, calling glfwSwapInterval will have no effect.

GLFW uses the WGL_ARB_pixel_format and WGL_ARB_multisample extensions to create
contexts with multisampling anti-aliasing. Where these extensions are unavailable, the
GLFW_FSAA_SAMPLES hint will have no effect.

GLFW uses the WGL_ARB_create_context extension when available, even when creating OpenGL R©

contexts of version 2.1 and below. Where this extension is unavailable, the
GLFW_OPENGL_VERSION_MAJOR and GLFW_OPENGL_VERSION_MINOR hints will only be

GLFW Reference Manual API version 2.7 Page 64/64

partially supported, the GLFW_OPENGL_DEBUG_CONTEXT hint will have no effect, and setting the
GLFW_OPENGL_PROFILE or GLFW_FORWARD_COMPAT hints to a non-zero value will cause
glfwOpenWindow to fail.

GLFW uses the WGL_ARB_create_context_profile extension to provide support for context profiles.
Where this extension is unavailable, setting the GLFW_OPENGL_PROFILE hint to anything but zero
will cause glfwOpenWindow to fail.

A.4 OpenGL 3.0+ on Mac OS X

Support for OpenGL 3.0 and above was introduced with Mac OS X 10.7, and even then only
forward-compatible OpenGL 3.2 core profile contexts are supported. There is also still no mechanism
for requesting debug contexts. Versions of Mac OS X earlier than 10.7 support at most OpenGL version
2.1.

Because of this, on Mac OS X 10.7, the GLFW_OPENGL_VERSION_MAJOR and
GLFW_OPENGL_VERSION_MINOR hints will fail if given a version above 3.2, the
GLFW_FORWARD_COMPAT is required for creating OpenGL 3.2 contexts, the
GLFW_OPENGL_DEBUG_CONTEXT hint is ignored and setting the GLFW_OPENGL_PROFILE
hint to anything except zero or GLFW_OPENGL_CORE_PROFILE will cause glfwOpenWindow to
fail.

Also, on Mac OS X 10.6 and below, the GLFW_OPENGL_VERSION_MAJOR and
GLFW_OPENGL_VERSION_MINOR hints will fail if given a version above 2.1, the
GLFW_OPENGL_DEBUG_CONTEXT hint will have no effect, and setting the
GLFW_OPENGL_PROFILE or GLFW_FORWARD_COMPAT hints to a non-zero value will cause
glfwOpenWindow to fail.

	1 Introduction
	2 GLFW Operation Overview
	2.1 The GLFW Window
	2.2 The GLFW Event Loop
	2.3 Callback Functions
	2.4 Threads

	3 Function Reference
	3.1 GLFW Initialization and Termination
	3.1.1 glfwInit
	3.1.2 glfwTerminate
	3.1.3 glfwGetVersion

	3.2 Window Handling
	3.2.1 glfwOpenWindow
	3.2.2 glfwOpenWindowHint
	3.2.3 glfwCloseWindow
	3.2.4 glfwSetWindowCloseCallback
	3.2.5 glfwSetWindowTitle
	3.2.6 glfwSetWindowSize
	3.2.7 glfwSetWindowPos
	3.2.8 glfwGetWindowSize
	3.2.9 glfwSetWindowSizeCallback
	3.2.10 glfwIconifyWindow
	3.2.11 glfwRestoreWindow
	3.2.12 glfwGetWindowParam
	3.2.13 glfwSwapBuffers
	3.2.14 glfwSwapInterval
	3.2.15 glfwSetWindowRefreshCallback

	3.3 Video Modes
	3.3.1 glfwGetVideoModes
	3.3.2 glfwGetDesktopMode

	3.4 Input Handling
	3.4.1 glfwPollEvents
	3.4.2 glfwWaitEvents
	3.4.3 glfwGetKey
	3.4.4 glfwGetMouseButton
	3.4.5 glfwGetMousePos
	3.4.6 glfwSetMousePos
	3.4.7 glfwGetMouseWheel
	3.4.8 glfwSetMouseWheel
	3.4.9 glfwSetKeyCallback
	3.4.10 glfwSetCharCallback
	3.4.11 glfwSetMouseButtonCallback
	3.4.12 glfwSetMousePosCallback
	3.4.13 glfwSetMouseWheelCallback
	3.4.14 glfwGetJoystickParam
	3.4.15 glfwGetJoystickPos
	3.4.16 glfwGetJoystickButtons

	3.5 Timing
	3.5.1 glfwGetTime
	3.5.2 glfwSetTime
	3.5.3 glfwSleep

	3.6 Image and Texture Loading
	3.6.1 glfwReadImage
	3.6.2 glfwReadMemoryImage
	3.6.3 glfwFreeImage
	3.6.4 glfwLoadTexture2D
	3.6.5 glfwLoadMemoryTexture2D
	3.6.6 glfwLoadTextureImage2D

	3.7 OpenGL Extension Support
	3.7.1 glfwExtensionSupported
	3.7.2 glfwGetProcAddress
	3.7.3 glfwGetGLVersion

	3.8 Threads
	3.8.1 glfwCreateThread
	3.8.2 glfwDestroyThread
	3.8.3 glfwWaitThread
	3.8.4 glfwGetThreadID

	3.9 Mutexes
	3.9.1 glfwCreateMutex
	3.9.2 glfwDestroyMutex
	3.9.3 glfwLockMutex
	3.9.4 glfwUnlockMutex

	3.10 Condition Variables
	3.10.1 glfwCreateCond
	3.10.2 glfwDestroyCond
	3.10.3 glfwWaitCond
	3.10.4 glfwSignalCond
	3.10.5 glfwBroadcastCond

	3.11 Miscellaneous
	3.11.1 glfwEnable/glfwDisable
	3.11.2 glfwGetNumberOfProcessors

	A GLFW Compatibility
	A.1 ICCCM and EWMH Conformance
	A.2 GLX Extensions
	A.3 WGL Extensions
	A.4 OpenGL 3.0+ on Mac OS X

