Objective Function Analysis models knowledge as a multi-dimensional probability density function (MD-PDF) of the perceptions and responses (which are themselves perceptions) of an entity and an objective function (OF). The learning algorithm is the action of choosing a response, given the perceptions, which maximizes the objective function. The MD-PDF is initially seeded by a uniform random number generator. The response is used to evaluate the OF and the OF is either reinforced or diminished in the probability subspace formed by the perceptions and responses. Stated another way, in response to its perceptions, an entity evaluates every possible value of the OF in the subspace defined by the n perceptions and m responses and chooses the response which maximizes the OF. Eventually the randomly seeded MD-PDF changes to reflect the mathematical properties embodied in the OF.

OFA is demonstrated through several simulations maintained in this repository. Contact phgphd@yahoo.com.

Features

  • C++, Qt5 graphics, QwtPlot3D, OpenGL
  • Scientific paper, ofapaper.odt (docx)

Project Samples

Project Activity

See All Activity >

Follow Objective Function Analysis

Objective Function Analysis Web Site

Other Useful Business Software
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Objective Function Analysis!

Additional Project Details

Registered

2019-06-12