Download Latest Version NanoDet-Plus v1.0.0.zip (1.7 MB)
Email in envelope

Get an email when there's a new version of NanoDet-Plus

Home / v1.0.0-alpha-1
Name Modified Size InfoDownloads / Week
Parent folder
NanoDet-Plus v1.0.0-alpha.tar.gz 2021-12-27 1.5 MB
NanoDet-Plus v1.0.0-alpha.zip 2021-12-27 1.6 MB
README.md 2021-12-27 2.4 kB
nanodet-plus-m-1.5x_416_openvino.zip 2021-12-27 4.6 MB
nanodet-plus-m-1.5x_416_ncnn.zip 2021-12-27 4.6 MB
nanodet-plus-m-1.5x_416.onnx 2021-12-27 9.9 MB
nanodet-plus-m-1.5x_416_checkpoint.ckpt 2021-12-27 64.6 MB
nanodet-plus-m-1.5x_320.onnx 2021-12-27 9.9 MB
nanodet-plus-m-1.5x_320_checkpoint.ckpt 2021-12-27 64.6 MB
nanodet-plus-m_416_openvino.zip 2021-12-27 2.2 MB
nanodet-plus-m_416_mnn.mnn 2021-12-27 4.8 MB
nanodet-plus-m_416.onnx 2021-12-27 4.8 MB
nanodet-plus-m_416_ncnn.zip 2021-12-27 2.2 MB
nanodet-plus-m_416_checkpoint.ckpt 2021-12-27 35.5 MB
nanodet-plus-m_320.onnx 2021-12-27 4.8 MB
nanodet-plus-m_320_checkpoint.ckpt 2021-12-27 35.5 MB
Totals: 16 Items   251.2 MB 3

NanoDet-Plus v1.0.0-alpha

In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset.

image

Model Resolution mAPval
0.5:0.95
CPU Latency
(i7-8700)
ARM Latency
(4xA76)
FLOPS Params Model Size
NanoDet-m 320*320 20.6 4.98ms 10.23ms 0.72G 0.95M 1.8MB(FP16) | 980KB(INT8)
NanoDet-Plus-m 320*320 27.0 5.25ms 11.97ms 0.9G 1.17M 2.3MB(FP16) | 1.2MB(INT8)
NanoDet-Plus-m 416*416 30.4 8.32ms 19.77ms 1.52G 1.17M 2.3MB(FP16) | 1.2MB(INT8)
NanoDet-Plus-m-1.5x 320*320 29.9 7.21ms 15.90ms 1.75G 2.44M 4.7MB(FP16) | 2.3MB(INT8)
NanoDet-Plus-m-1.5x 416*416 34.1 11.50ms 25.49ms 2.97G 2.44M 4.7MB(FP16) | 2.3MB(INT8)
YOLOv3-Tiny 416*416 16.6 - 37.6ms 5.62G 8.86M 33.7MB
YOLOv4-Tiny 416*416 21.7 - 32.81ms 6.96G 6.06M 23.0MB
YOLOX-Nano 416*416 25.8 - 23.08ms 1.08G 0.91M 1.8MB(FP16)
YOLOv5-n 640*640 28.4 - 44.39ms 4.5G 1.9M 3.8MB(FP16)
FBNetV5 320*640 30.4 - - 1.8G - -
MobileDet 320*320 25.6 - - 0.9G - -

Model checkpoints and weights

Download in the release files.

Source: README.md, updated 2021-12-27