
A Scripted Sample-Based Music System for Game
Environments using .NET

Laurence Parry

BSc in Computer Science

University of Bath

May 2004

A Scripted Sample-Based Music System for Game Environments using .NET

- ii

A Scripted Sample-Based Music System for Game
Environments using .NET

Submitted by Laurence O M Parry

Copyright

Attention is drawn to the fact that the copyright of this thesis rests with its author.
The Intellectual Property Rights of the products produced as part of the project
belong to the University of Bath (see
http://www.bath.ac.uk/ordinances/#intelprop).

This copy of the thesis has been supplied on condition that anyone who consults it
is to recognize that its copyright rests with the author and that no quotation from
the thesis and no information derived from it may be published without the prior
written consent of the author.

This thesis may be made available for consultation within the University Library
and may be photocopied or lent to other libraries for the purpose of consultation.

Signed: ………………….. (Laurence Parry)

Declaration

This dissertation is submitted to the University of Bath in accordance with the
requirements of the degree of Batchelor of Science in the Department of
Computer Science. No portion of the work in this dissertation has been submitted
in support of an application for any other degree or qualification of this or any
other university or institution of learning. Except where specifically
acknowledged, it is the work of the author.

Signed: ………………….. (Laurence Parry)

A Scripted Sample-Based Music System for Game Environments using .NET

- iii

Abstract

Computer music is an area which has shown much development in recent years.
Improvements in consumer sound hardware have allowed computer games to
include complex music systems controlled by scripts. We study an example of
these, including reverse-engineering of the file format and analysis of the scripting
language, for use in creating tools to edit and play this music by third parties.
Implementation of a component-based music file editor and player is attempted in
.NET using an LALR parser compiler and an interpretation engine based on the
Visitor pattern. We provide a specification of the file format and scripting
language with the above tools, and conclude that it is possible to develop complex
scripted music systems with relative ease using .NET.

Acknowledgements

I would like to thank my project supervisor John ffitch for his valuable support
and advice, both humorous and otherwise. I would also thank those members of
the Creatures community that have assisted in this project, notably MNB, Clucky,
vadim, edash and the regulars of Sine and JRC. The Compiler Tools for C#
provided by Dr M Crowe of the University of Paisley were vital to this project, as
were the VBCommenter and NDoc projects.

A Scripted Sample-Based Music System for Game Environments using .NET

- iv

Contents

Copyright .. ii
Declaration .. ii
Abstract .. iii
Acknowledgements .. iii
Contents ... iv
List of Figures .. vi
List of Tables ... vi
Chapter 1 - Introduction.. 1
Chapter 2 - Literature Review... 3

2.1 Overview... 3
2.2 Computers Sound and Computer Music ... 3
2.3 Music in Computer Games ... 4
2.4 Aleatoric Music... 5
2.5 Sound Effects .. 6
2.6 Scripting .. 6
2.7 Compilation Techniques and Technologies .. 7
2.8 Implementation Technologies... 8
2.9 Summary ... 9

Chapter 3 - Preliminary Work... 10
3.1 Identification of the MNG File Format... 10
3.2 Overview of the MNG Scripting Language .. 13

3.2.1 Tracks... 13
3.2.2 Variables .. 14
3.2.3 Layers... 14
3.2.4 LoopLayers .. 14
3.2.5 AleotoricLayers and Voices... 14
3.2.6 Update Blocks .. 15
3.2.7 Intervals.. 15
3.2.8 Beats, BeatLength and BeatSynch ... 16
3.2.9 Effects .. 16

Chapter 4 - Requirements.. 17
4.1 The Users .. 17

4.1.1 Metaroom Developers.. 17
4.1.2 Other Creatures Developers ... 17
4.1.3 General Users ... 18

4.2 Requirements Solicitation ... 18
4.3 Throwaway Prototype ... 18

4.3.1 Rationale .. 18
4.3.2 Construction of the Prototype .. 19
4.3.3 Questionnaire ... 19

4.4 Requirements Analysis.. 20
4.4.1 Operating Environment.. 20
4.4.2 Limitations of End Users ... 20
4.4.3 Task Analysis ... 20

4.5 Requirements Specification .. 20
4.6 Requirements Review ... 21
4.7 Test Plan.. 22

A Scripted Sample-Based Music System for Game Environments using .NET

- v

Chapter 5 - Design .. 23
5.1 User Interface .. 23

5.1.1 MNGPad .. 23
5.1.2 MNGPlayer .. 24
5.1.3 MNGEdit.. 24

5.2 MNG Parser Design .. 24
5.2.1 Nodes ... 25
5.2.2 The Visitor Class.. 25

5.3 The MNG File Filter Component.. 25
5.4 Structure of the Music Engine... 25

5.4.1 Readers and Players ... 26
5.4.2 The Sound Manager ... 26
5.4.3 Threaded Playback Architecture .. 26
5.4.4 Interpreter Design... 27

Chapter 6 - Implementation .. 28
6.1 Parser Construction ... 28
6.2 Handling the Lack of Parametric Polymorphism.................................... 28
6.3 General Issues ... 29

6.3.1 Thread Handling... 29
6.3.2 Secure File Handling.. 29
6.3.3 Global and Local Variables.. 29

6.4 Packaging, Documentation and Distribution .. 29
6.4.1 Setup... 29
6.4.2 Documentation ... 30
6.4.3 Hosting and Distribution.. 30

Chapter 7 - Testing.. 31
7.1 Methodology ... 31
7.2 Musical Output.. 32
7.3 Usability Testing ... 34
7.4 Other Testing Results.. 34

Chapter 8 - Conclusion ... 36
8.1 Concrete Achievements .. 36

8.1.1 The MNG File and Scripting Format Specifications 36
8.1.2 MNGPad – A Basic MNG File Editor ... 36
8.1.3 MNGPlayer – A Background Music Player 36
8.1.4 MNGTools – A Library for MNG File Management and Playback 36

MNGFilter... 36
MNGParser ... 36

8.2 Review of Design Decisions ... 37
8.2.1 Use of the Parser Generator ... 37
8.2.2 Use of the Visitor Pattern... 38
8.2.3 Choice of Language and the .NET Runtime 38
8.2.4 Use of DirectSound.. 39
8.2.5 Choice of a Multithreaded Effect Architecture................................ 39

8.3 Review of Implementation and Packaging ... 39
8.3.1 Music Playback Engine.. 39
8.3.2 MNGTools Developer Documentation.. 40

8.4 User Feedback... 40
8.5 Future Work .. 40

8.5.1 MNGEdit.. 40

A Scripted Sample-Based Music System for Game Environments using .NET

- vi

8.5.2 Development of MNGPad ... 40
8.5.3 Extended User Usability Testing ... 40
8.5.4 Development of the MNGTools suite .. 41
8.5.5 Portability... 41

Chapter 9 - Bibliography... 42
Appendix A - MNG File and Scripting Formats... 46

A.1 MNG File Format... 46
A.2 MNG Scripting Format .. 48

A.2.1 Lexical Grammar .. 48
A.2.2 Parser Grammar... 48

Appendix B - MNGPad/MNGPlayer User Guide... 52
B.1 Introduction .. 52
B.2 How A MNG Music File Works .. 52
B.3 Using Samples .. 52
B.4 Making Scripts ... 53

B.4.1 Tracks, Layers, Voices and Updates ... 53
B.4.2 Using Effects ... 53

B.5 Hopefully Helpful Hints ... 54
B.6 Conclusion.. 55

Appendix C - User Questionnaire ... 56
Appendix D - Scramble Function ... 57
Appendix E - Build Tools ... 58

E.1 C# Complier Tools – Lexer and Parser Generator 58
E.2 NDoc – XML-based Documentation Generator..................................... 58

Appendix F - Code Samples ... 59

List of Figures

Figure 3-1: Samples of sound are clearly visible within the MNG file 11
Figure 3-2: A rough pattern is present in the scrambled script 12
Figure 4-1: The prototype editor was functional, but not generally usable 19
Figure 5-1: The MNGPad user interface... 23
Figure 5-2: The MNGPlayer user interface .. 24
Figure 7-1: Comparison of effect handling methods .. 32
Figure 7-2: Users preferred cursors placed before errors...................................... 34

List of Tables

Table A-1: MNG File Disk Layout... 46
Table B-1: Script Lexical Grammar.. 48
Table F-1: Included code samples..59

A Scripted Sample-Based Music System for Game Environments using .NET

 1

Chapter 1 - Introduction

This project examines a specific example of the use of scripted music in computer
games, and follows the development of tools to support its creation and playback.
Our objectives were to identify and document the music format (described in
chapter 3), decide who the users of this music were and what tools might be useful
to them (chapter 4), and then design, implement and test these tools (chapters 5, 6
and 7). The conclusions gathered from this work are presented in chapter 8.

The Creatures series (Grand 1997) is a curious mix of game and artificial life
simulation. The first version of the game used several short sampled sequences to
provide in-game background music. Later games have used a far more
sophisticated means of music generation based around a set of short recorded
sound samples – each sample is a series of sound data points, typically either a
single note or a chord from one instrument – combined with a script providing
instructions to the music engine as to which samples to play, and when to play
them. (Cyberlife 2000)

The script file is a set of scripts, one for each track. Tracks are a logical division
of music – tracks are either associated with an in-game area or keyed to some
specific event (for example, the death of one of the creatures). The samples played
in each track can be affected by the situation; for example, if an evil creature is
around then harsher sounds are used. This is implemented by providing externally
modifiable script variables (e.g. “Threat”).

MNG1 (or “munge”) files are used to store the game music. The name is apt, as
the file format mixes together both the samples used to create the music and the
scripts directing their use. Preliminary work authorised by Creatures Labs as part
of their permission for this project had partially identified the layout of this file
through reverse engineering techniques – the original music was created several
years ago and there was no documentation available for the file or scripting
formats. The first objective of this project was to document these formats.

There are many thousands of Creatures users around the world, and many of them
have created their own additions to the game; Creatures has always supported
third-party additions, and latter versions of the game are highly customizable.
These additions include metarooms; areas of the game environment that have
been added to the base system, or which replace portions of it altogether. The
designers of these additions wished to add appropriate music to their metarooms,
but were unable to do so because there was no tool to create new music files.
Creation of such a tool was the next (and primary) objective of this project.

This editing tool was useful, but hard to use alone as it did not allow users to
preview the music that they were creating, requiring them to load it into the game.
To improve this situation, another identified objective was to make a sound

1 Note that MNG is also the acronym for Multiple-image Network Graphics, a format for
animated image files based on the PNG image format. When the Creatures music format was
created, the MNG acronym was PNF.

A Scripted Sample-Based Music System for Game Environments using .NET

 2

engine and accessory capable of playing the music specified by the script. This
required parsing and interpreting the script, sound mixing, application of effects
and output of the resulting music using DirectSound (Microsoft 2003b), and was
ultimately successful despite setbacks. The combination of the two tools was
successfully used by several target users to add music to their metaroom projects.

Finally, as scripting does not tend to be particularly intuitive for non-programmers
(including most musicians), allowing the users to create music without knowledge
of the underlying scripting language was considered useful. This required some
form of interface that was easy to learn yet exposed all features available in the
language. The final aim of this project was to design and implement such an
interface for the editing tool. This aim was not fully realized; however the
information collected and components generated while creating the previous tools
make its completion within a few months a possibility.

A Scripted Sample-Based Music System for Game Environments using .NET

 3

Chapter 2 - Literature Review

2.1 Overview

There were many factors to be considered before undertaking this project. The
purpose of this review is to identify these factors, and to understand their
relevance to the tasks that will be performed. It will also explain the context of
this project in relation to other works, especially in the academic world. In
particular, it will show how the union of computers and music has developed over
the years, and how this project makes use of the research and tools that have been
created to fulfil the needs of computer music.

We will begin by looking at the history of computers and sound, and how it has
developed over time into the field of computer music. This leads us into the more
recent topic of music in computer games, as well as to the subject of aleatoric
music. A large amount of research has been done towards providing effects to
modify sounds and music and we shall give a few examples of these.

We shall then proceed to consider the basics of scripting languages, both their
purpose and use, and the compilation techniques that may be useful to interpret
them for this project. Finally, we will give some thought to the other technologies
which might be suitable for implementing this project – in particular, the choice of
programming language – and close with a summary of the points raised.

2.2 Computers Sound and Computer Music

The field of computer music dates back to the late 1950s when Max Mathews
developed the pioneering MUSIC4 at Bell Laboratories, one of the first sound
synthesis programs (Burns 1997). He and fellow researchers would go on to
produce further versions, including a portable MUSIC5 written in FORTRAN
(Mathews 1969). More importantly, they shared their knowledge with fellow
researchers in Princeton and Stanford. However, computers of the time could not
compete with analogue electric synthesizers in terms of audio quality, and it was
not until the 1970s that digital generation of sounds became popular. Efforts
proceeded both in the area of sound generation and the playback of digitally
stored sounds, which was previously unfeasible owing to storage constraints.

The invention of MIDI (MIDI 2003) in 1983 provided a standard for sequenced
computer-based music. Two years later Barry Vercoe invented the Csound system
(Csound 1999), a sound synthesis and scoring system in the spirit of the then
long-lived MUSIC series, which he had developed through the late 60s and 70s.
More recently, personal general-purpose computers have become sufficiently
powerful that complex instrument synthesis and effects processing can be
performed in real time on them without dedicated DSP hardware. This has
allowed new applications in many areas – most noticeably in computer games.

An area of research that it is useful to contrast this project against is algorithmic
composition, as described in (Maurer 1999). This has always been a popular topic

A Scripted Sample-Based Music System for Game Environments using .NET

 4

in research circles, and it is still an active area of research. Many systems have
been developed in an attempt to generate “good” music through rules-based or
stochastic methods, or more recently through the use of genetic algorithms. This
project does not include such techniques – it relies on the composer to generate a
script, and so a human performs the act of composition; the execution is left to the
computer. However, certain random and computer-controlled elements remain,
notably the use of in-game variables to influence timings and instruments used.

Nowadays there are two main extremes in the computer music world – those who
seek to generate music from samples of real sound, and those who prefer to
generate music from entirely artificial sounds. Those in the commercial world
tend to use the former as they have greater control over the output and, while
many of those in the research community prefer the latter. It is our belief that a
mixture of these approaches is useful, and indeed many contemporary music
generation schemes fall somewhere in-between; in particular, the use of
recordings of computer-generated sounds is common where on-the-fly generation
of those sounds would be computationally infeasible, and the application of
computer effects to natural (or at least non-computer-generated) sounds is a large
portion of this project.

2.3 Music in Computer Games

Music was often a selling point for personal computers of the early 80s, most
notably the Commodore Amiga and Atari ST, the latter of which was advertised
under the tagline “This Computer Was Made For Music” (Morton 1990). In stark
contrast, the IBM personal computer was not supplied with any built-in sound
capability – it was designed solely as a business machine. Those who used it for
other purposes were forced to wait for additional hardware to become available.

The first add-on sound card for the PC to achieve mass-market popularity was the
Adlib. This was later overcome by the SoundBlaster system, which survives today
in the Audigy family of cards. These add-on cards allowed stereo sound and
enveloped instruments, and became widely used both to generate music and in-
game sound effects. Most used frequency modulation (FM) techniques discovered
by Chowning (1973) and first implemented in Yamaha synthesizers.

As with FM, wavetable synthesis was first used in electronic synthesizers.
Wavetable synthesis works by taking several digital samples of an instrument and
playing these when directed (typically by a MIDI score). This technique is now in
general use, having surpassed the FM technologies used by earlier sound cards,
and the use of FM to generate custom sounds has been replaced by the practice of
using recorded samples.

However, computer music is not all about what techniques can be used to generate
the sounds. Software is also required to control when and how sounds are to be
played to form music. This can be decided by some external body of code – i.e.
the main game – and so make use of its knowledge of the status of the game and
any events that may occur. This technique is known as adaptive audio (Clark
2001, Whitmore 2003). Such systems significantly aid the generation and use of
music to match the situation; however, it is generally recognized that such

A Scripted Sample-Based Music System for Game Environments using .NET

 5

technical aids still require experienced composers to produce desirable results.
Most musicians in the gaming industry still do not consider algorithmic
composition sufficiently advanced to produce the required quality of music on its
own.

LucasArts was regarded by many as being one of the leaders in this area during
the early 90s with their iMuse system. Developed by Land and McConnell (1991),
iMuse was originally designed to handle MIDI streams, and later extended to
apply to sampled sounds. Naturally, this has a direct relevance to our project. The
main difference is that iMuse was designed to control the output of pre-prepared
MIDI or digital scores, whereas the Creatures music system is designed to
generate music from samples; its script allows for variations in the timing of
samples, or whether they should be played at all. The former method makes it
easier to generate complex music, but the latter allows for a more aleatoric
approach. iMuse was certainly very successful, and is a good example of how
event-based music can add significantly to the perceived quality of a game.

This field moves relatively quickly – in the space of just a few years we have
come from monotonic beeps to quality rivalling professional sound systems;
indeed, many composers now base their entire work around computers. This
progress has been driven by the demands of consumers for high-fidelity sound,
increase in the numbers of these consumers with the rise of the PC gaming
industry and rapid advances in the technology available to implement such
features.

2.4 Aleatoric Music

Aleatoric music is variously defined as “Chance music in which the performers
are free to perform their own material and/or their own manner of presentation,”
and “Composition depending upon chance, random accident, or highly
improvisational execution, typically hoping to attain freedom from the past, from
academic formulas, and the limitations placed on imagination by the conscious
mind.” (Delahunt 2003)

It may seem difficult to reconcile the idea of chance with computers, which are by
their nature deterministic machines. However, many algorithms have been
developed to generate pseudo-random numbers, and the speed at which computers
can perform this has provided many applications. In the last century, much work
was done in this area by the American composer John Cage (of 4’39” fame), who
made use of computer programs in concert with Andrew Culver (2001) to
generate note timings, pitches and even whole pieces. Still, this work was
generally done as a single piece rather than being controlled through variables that
may change as the result of external actions.

The music in Creatures does not aim to be totally aleatoric – rather it incorporates
aleatoric elements, such as partially random delays between instruments. This
allows an element of irregularity to enter the composition while affording the
composer a great deal of control – as mentioned in the Cyberlife article on the
music (2000), “you hear a melody that was never intended as the brain makes
sense of the different sounds generated.”

A Scripted Sample-Based Music System for Game Environments using .NET

 6

2.5 Sound Effects

Much of the variation and liveliness in the music for the Creatures games is
produced by the use of various sound effects. Sound effects are a specific
application of digital filters and digital signal processing, which is a whole topic
in itself (Smith 1999). In essence, they can be regarded as the convolution of one
waveform with another – for example, an echoed version of a given sample can be
produced by taking the sound of a sudden balloon burst and the subsequent
echoes, and applying it to the sample waveform with convolution. However, this
method is typically used only for complex reverberations and other effects that are
impossible to apply otherwise, as they are computationally expensive. More
typically, a filter is some combination of the input to and/or output from the filter
over a number of data points in a sample.

Other examples of sound effects are chorusing, which may be implemented by
playing the same sound at slightly different intervals (and slightly out of tune);
flanging, which causes the sound to appear to “speed up” and “slow down” over a
short period of time; compression, that restricts the range of amplitudes (causing
quiet sounds to become louder and loud sounds to become quieter) and wave-
shaping, which can alter the timbre of a sound by applying a function to the
amplitude that has a particular shape.

Effects must be used judiciously, lest they overwhelm the original sound (and in
the case of computationally expensive filters such as reverberation, the computer
on which they are running). Care must also be taken to ensure that i (where the
sound level suddenly changes from one level to another) and/or clipping (where
the sound produced exceeds the maximum level expressible) do not occur; the
latter may be ameliorated by the appropriate use of gain reduction, a technique
whereby the signal level is reduced to fall within the valid range.

2.6 Scripting

Both samples and effects require orchestration. In the MNG music system these
are specified by the composer in a custom scripting language. There are many
definitions of exactly what a scripting language is. John Osterhout (author of Tcl)
proposed the following dichotomy:

System programming languages (or "applications languages") are
strongly typed, allow arbitrarily complex data structures, and
programs in them are compiled, and are meant to operate largely
independently of other programs. Prototypical system programming
languages are C and Modula-2.
By contrast, scripting languages (or "glue languages") are weakly
typed or untyped, have little or no provision for complex data
structures, and programs in them ("scripts") are interpreted. Scripts
need to interact either with other programs (often as glue) or with a
set of functions provided by the interpreter, as with the file system
functions provided in a UNIX shell and with Tcl's GUI functions.

A Scripted Sample-Based Music System for Game Environments using .NET

 7

This definition is debatable, particularly as the line between scripting and system
languages has narrowed. For example, PHP would seem to be a scripting
language, yet there exist accelerators for PHP that effectively turn it into a
compiled language. (Zend 2003)

Regardless of the definition, scripting languages have arisen because there is a
need for high-level, easy-to-learn and readily modifiable computer languages. In
the case of this project, the advantages of using a scripting language to control the
music are twofold; it allows rapid changes to the music (possibly even while the
script is running) and does not force the composer to learn a programming
language in order to do their work. Given the simplicity of the scripts, efficiency
is not a significant concern. However, we do need to be able to read the scripts,
and this requires the use of technologies used for compilation.

2.7 Compilation Techniques and Technologies

At a first glance, compilation does not seem to have much to do with the
generation of computer music. However, compilation is often viewed as a
translation from one language to another. This process is similar to that of music,
which is translated from one form – notes on a sheet of music – into another, the
performed piece, by the performer. In this case, the performer has taken on the
role of the translator.

In this project it was necessary to translate from the written music script to a
representation that may be used by the program, such as an abstract syntax tree.
This involves the processes of lexing (separating and identifying unique tokens in
the input stream) and parsing (putting these tokens together to form meaningful
statements).

There are many ad-hoc methods available for performing this task, but the
standard tools for creating lexers and parsers are lex (Lesk 1975) and yacc
(Johnson 1975). These tools – known respectively as lexical analyzer generators
and parser generators – allow the vast majority of computer languages to be
processed2. This is done by preparing (for lex) a token recognition mapping and
(for yacc) a file indicating the rules for matching patterns of tokens and the
actions to be performed when a match is found – the grammar of the language.

These particular tools are proprietary, developed by AT&T in the 70s. Improved
versions called flex and bison have been created and distributed under free open
source licenses by the GNU project (GNU 2003a, 2003b). Use of these tools
allows the programmer to avoid the complicated task of recognizing syntax and to
concentrate on semantics.

All the tools mentioned create C source code, and so are best suited for programs
written in C or C++. However, this should not curtail our choice of language, as
there are many alternatives claiming compatibility or equivalent function for other
languages. In particular, the JFlex lexical analyzer (Klein 2003) and the CUP
parser generator (Ananian et. al. 1999) are available for Java, and similar tools

2 Specifically, those for which it is possible to construct an LALR context-free grammar

A Scripted Sample-Based Music System for Game Environments using .NET

 8

have been created for C#; due to the language-agnostic nature of the .NET
platform, this means that all the .NET languages have access to them (Crowe
2004).

2.8 Implementation Technologies

The Creatures games run on Microsoft Windows, and so this was the initial target
platform for this project. There are of course many languages available to
implement this project in. Indeed, some music-specific languages were considered
(Thompson 2003), but owing to the large amount of non-musical content in this
project, a general-purpose language was deemed more suitable.

The original music system was created using C++, and this was a clear option,
featuring high performance and a wide user base. However, since C++ is a
relatively low-level language, development can take a relatively long amount of
time, and as time was limited a higher-level approach seemed more suitable.

Visual Basic was considered, as it provides rapid application development and is
also widely used. Unfortunately it lacks a good freely available implementation of
lexing/parsing tools, without which we would have had to generate our own
parser logic, taking time away from the core objectives. It also lacks key language
concepts such as inheritance. (McKinney 1997)

Another candidate language was Java. This has a strong class library system, an
object-oriented approach and good user-interface support. However, it is weak in
terms of sound functions – as it must be general across several platforms, it is
unable to use the strengths of each to full effect, and so the sound API (Sun 2003)
is relatively basic, offering no support for advanced effects.

This led us to look at the .NET platform, and in particular Visual Basic.NET. This
incarnation of Visual Basic includes proper exception handling and a vast library
of classes - the .NET Framework (Microsoft 2003a). Running on this framework
provides similar garbage collection and security benefits to Java. Moreover, use of
the .NET platform would not preclude us from using the native DirectSound API
(Microsoft 2003b), a particularly useful feature as the original implementation
used DirectSound to manage both sound output and effects. Using DirectSound
might allow the use of chorus, compression, distortion, echo, flanging, gargling,
equalization and environmental reverberation without significant extra work. In
addition, the lexical analysis and parser generator previously mentioned (Crowe
2004) would be available.

Naturally for a project intended for use by others, portability is a concern, as
currently the main implementation of the platform is only for Windows. However,
the .NET platform is (theoretically) an open standard, and there are at least two
alternative free implementations in progress – dotGNU Portable.NET (DotGnu
2003) and Mono (Mono 2003). Microsoft have also released a “Shared Source”
version of .NET called Rotor (Microsoft 2002) working on Windows, FreeBSD
and (recently) Mac OS X 10.2. This was deemed sufficient as the primary
objective of this project was a system running on Windows. Further details
relating to portability concerns are given in the conclusion (see 8.5.5).

A Scripted Sample-Based Music System for Game Environments using .NET

 9

DirectX also offers a music API – DirectMusic (Hays 1998, Yackley 1999).
However, we believed there to be several good reasons not to use DirectMusic to
handle the music. One reason was the lack of a “managed” version of the
DirectMusic API for .NET, as there is for DirectSound. Writing an
interoperability layer between .NET and DirectMusic would be a significant task.
Another was that DirectMusic is still heavily tied to the MIDI approach of
sequenced music (albeit with the option of sampled sounds), while our system
was based around a potentially more generative, scripted approach.

Moreover, using DirectMusic would further tie the project to proprietary
technologies for which there is no open-source implementation available.
DirectSound is proprietary, but with appropriate design it could be replaced by
another mechanism for output and effects, just as the implementation of the .NET
platform itself could be changed, without materially affecting the project. It is
rather less likely that a third party will produce a DirectMusic-compatible
component, and so we deemed it unwise to use DirectMusic in this project.

2.9 Summary

We began by considering the general development of computer sound and
computer music from its origins in the 1950s to today. We have seen that over
time, new technologies and techniques became available for the generation of
sounds and music, including frequency modulation, wavetable synthesis,
algorithmic composition and the MIDI standard for sequenced music. We then
continued to a discussion of the various types of hardware device used for the
playback of music, and how these have changed over the years in response to user
demand.

Adaptive audio was introduced as an answer to the need for event-driven software
control of music, and a discussion of the iMuse system, and its relevance to this
project was given. A short diversion into aleatoric music was made, and its
historical use by Cage briefly discussed. We then proceeded to outline the concept
of sound effects, and suggested a few examples and how they might be
implemented.

We then gave a definition of scripting languages, and offered several reasons why
use of a scripting language was an appropriate choice for the composition of
music. The evolution of lexical analysis and parser generation was shown, and a
variety of implementations of these were considered. Finally, we investigated
several languages and technologies and gave our reasons for using a combination
of Visual Basic.NET, DirectSound and the C# compiler tools for the
implementation phase of this project.

A Scripted Sample-Based Music System for Game Environments using .NET

 10

Chapter 3 - Preliminary Work

Our lack of knowledge regarding the music format made it clear that some
preliminary work above and beyond the literature survey was required before
embarking on any design. This would both serve as a solid base for this project
and allow others to create their own works using MNG files. We regard the
information provided in this chapter and in Appendix A sufficient to create
programs similar to ours in any language.

3.1 Identification of the MNG File Format

Little was known about MNG files at the start of this project. The only
information available to us was a short article detailing some of the features of the
Creatures sound engine (Cyberlife 2000), as the persons involved in making the
music engine had left the company and no written documentation was available.

From this article we knew that:

• The music was intended largely as background “mood” music
• There were individual soundtracks for the separate areas of the game, as

well as for a few key events, such as the death or birth of a creature
• Each soundtrack was composed of several “players” and a script
• The music used sampled sound rather than MIDI – this was already clear

from looking at the size of the file
• The music incorporated “feedback loops”
• Variables such as “threat” and “mood” affected the music:

“Behind the scenes, scripts control the music engine and set the
volume, panning and interval between notes as the mood and
threat changes. When a Norn is lonely or hungry, the mood score
is low. Alternatively, when a Norn has just eaten and is happily
playing with a toy or with friends, the mood score is high. As the
threat level increases so does the volume and you get a sense that
something is about to happen.”

Given the size of the file, the amount of music, and the other files used for sound
effects, we suspected that the music was stored as samples for each instrument in
WAV format (IBM and Microsoft 1991), the standard for Windows recorded
audio. However, on scanning with a hex editor, we failed to find any telltale
WAV file signatures (“RIFF” or “WAVE”). Instead, a regular structure appearing
to be an index of positions and lengths was found at the beginning of the file,
starting with a number which we took to be the number of samples in the file.

Our original hypothesis was eventually confirmed by loading the file into a sound
editor (Cool Edit) as if it were a raw PCM encoding. Several distinct areas after
the file were immediately identified, and all but one of these were recognizable as
sounds; the first was later found not to be a sample at all. We were also able to
identify the sample rate, quantization level and number of channels (22050 Hz 16-
bit mono) by comparing with original sounds, which proved useful later.

A Scripted Sample-Based Music System for Game Environments using .NET

 11

Figure 3-1: Samples of sound are clearly visible within the MNG file

Having confirmed that sound was stored in a PCM encoding, we attempted to
classify the rest of the file’s contents. Each sample began with a short burst of
static, which (from its regular layout) indicated header information of some sort.
The breakthrough occurred when examining the numerical values of one of these
bursts of static. One of the word values contained in the file was 0x2256,
corresponding to the little-endian hexadecimal value of 22050, the previously
identified sample rate. This corresponded to a section of the WAV header, and
other portions of the file corresponded with valid values for a WAV header.

The format was finally identified as a WAV file, with the first 16 bytes truncated.
Why the WAV was truncated was unknown; it may simply have been for ease of
implementation, or it may have been a security measure to discourage
tampering/theft of the samples or unauthorised creation of new files.

Having identified the physical layout of the file, we proceeded to decoding the
script. It was clear that this was likely to lie within the first “chunk” of the MNG
file, but the chunk appeared to be formed of semi-random data. No clue as to its
format was available in the written materials available to us – they had not
discussed implementation details.

A Scripted Sample-Based Music System for Game Environments using .NET

 12

Figure 3-2: A rough pattern is present in the scrambled script

At this point we decided to look at the other files available to us. In particular,
MAP files containing debugging information (most usefully the names and offsets
of all class methods and functions) had been provided with the game executables
for use by the game’s crash reporting function, and so we examined those. The
LoadScrambled method of the MusicManager class was of immediate interest, as
was the Scramble function.

Use was made of a program called the Interactive DisAssember (IDA 2004) to
disassemble the code involved. This tool was chosen for its ability to present the
disassembled code in an easily navigable format. The Scramble procedure was
relatively short (as documented in Appendix D) and a VB.NET equivalent is
shown in Appendix A – it was found to perform a reversible transformation using
the bitwise XOR function. This is the same function used in most one-time pads
(see Wickepedia 2004), and is generally considered to be unbreakable if the
associated “pad” of bytes to be XORed against is random and of sufficient size.
However, since the game needs to descramble the code, it has to be provided by
the game. In fact, the pad used was merely an incrementing byte counter,
providing a very simple stream cipher.

If the MAP files had not been available the task would have become considerably
more difficult, as knowing which procedure to consider would have required
tracing the flow of execution and looking for references to the MNG files. It
might even have been possible to attack the cipher using frequency counts alone;
space characters form a high proportion of the output, and this could have been
predicted without seeing the resulting script. Since the generated XOR pad was
incremental, and most ASCII characters are within a certain range, there was a
rough pattern to the scrambled output from which the encryption method and pad
might have been deduced; it would, however, have been a complex task.

A Scripted Sample-Based Music System for Game Environments using .NET

 13

After accounting for every byte in the file, it was still not at all clear where the
identifiers for the music were stored. Finally we realised that the samples were
named implicitly – the first sample referred to in the script in a voice’s Wave
declaration was the first sample stored in the file, the second was placed after that,
and so on. We believe that the original Creatures music files were constructed
from a collection of WAV files, and so easy identification of the samples was not
an issue.

3.2 Overview of the MNG Scripting Language

At this point we shall present an overview of the scripting language, based on our
analysis of the scripts in the game music files. The scripts contain instances of
inconsistent formatting, leading us to believe that the game scripts were created
manually – it also would not make much sense for there to be a tool to create
them, as the development of music is a solitary task, and it would be cheaper and
quicker to train the few intended users in the scripting language than to write such
a program.

Many of the script commands were readily understandable by their names – others
required experimentation to identify their function. Further information was
provided by the CAOS scripting language guide (Cyberlife 2004) – CAOS is used
in Creatures to control objects and respond to events, and it contains several
commands allowing CAOS scripts to control the music, including those to
changing the currently-playing track, set the threat value of an object, and fade out
the music.

3.2.1 Tracks

The basic unit of music is a Track, which in the game is associated with either a
specific event - for example, the death of a creature - or an area, like the Volcano
track. Typically only one track plays at once; switching between tracks is
accomplished by fading in and out, adhering to the FadeIn and FadeOut track
parameters. Each Track has one or more Layers, which are played simultaneously.
Comments are indicated by a double slash (//) and may be placed within Track,
Effect, Voice or Update declarations, as well as at the top level.

Track(UpperTemple)
 {
 FadeIn(5)
 FadeOut(5)

 LoopLayer(Chord)
 {
 …
 }

 AleotoricLayer(StickMelody)
 {
 …
 }
 }

A Scripted Sample-Based Music System for Game Environments using .NET

 14

3.2.2 Variables

MNG scripts have a concept of local variables, which reside within these layers.
Variables must be declared before use, with the name and an initial value. The
variables are floating point values associated with names. Some variables are
special – Pan and Volume because they affect the samples to be played, and
Interval because it affects the length of the track.
AleotoricLayer(Pad)
 {
 Variable(temp,4.0)

 …

3.2.3 Layers

Layers are the “instruments” of a track, in that they either play one sample
repeatedly (in the case of LoopLayers) or one or more samples, enclosed within
Voices (AleotoricLayers).

3.2.4 LoopLayers

A LoopLayer consists of a single Wave and an Update block. The Wave is played
constantly and repeatedly. The Update is called at regular intervals and typically
causes some change in the presentation of the samples (for example, it may pan
the output from side to side, or alter the volume).

 LoopLayer(HighBreath)
 {
 Variable(counter,0.0)
 Variable(temp,0.0)
 Update
 {
 // Gradually, pan around at a random rate
 temp = Random(0.0, 0.1)
 counter = Add(counter, temp)
 Pan = CosineWave(counter, 30)
 // Scale the volume according to mood
 Volume = Multiply(Mood,0.4)
 Volume = Add(Volume,0.6)
 }
 UpdateRate(0.1)
 Wave(HighBreathG)
 }

3.2.5 AleotoricLayers and Voices

An AleotoricLayer consists of one or more Voices to be played sequentially.
Effects and Volume may be specified for the layer. The Interval of a layer
specifies how long it is before the next Voice of an AleotoricLayer is to be played
– it is possible to change this within the Voice.

Voices are individual Waves with optional Conditions and Intervals. Conditions
are used to decide whether or not the Wave should be played – the value of the
specified variable must be between the two specified values. Intervals allow the
script to specify how long to wait before the next sample.

A Scripted Sample-Based Music System for Game Environments using .NET

 15

 AleotoricLayer(BendyEcho)
 {
 Volume(0.4)
 Effect(PingPong160)
 Interval(4)
 Voice
 {
 Condition(Mood,0.2,0.6)
 Wave(Bnd0)
 Interval (Random(4.0, 9.4))
 }
 Voice
 {
 Condition(Mood,0.4,1.0)
 Wave(Bnd1)
 Interval (Random(4.0, 9.4))
 }
 }

3.2.6 Update Blocks

Both the LoopLayer and AleotoricLayer structures may have one Update block.
This block consists of assignments to variables (which may be special variables
such as Volume or Pan) that are carried out each time an update is called, and also
when beginning to play a layer. The time period for updates is set by the
UpdateRate or BeatSynch statement in LoopLayers, or each time the last Voice is
considered for AleotoricLayers. The Update blocks may also be placed within
Voice blocks, in which case the update takes effect after the voice’s Wave has
been played.

AleotoricLayer(Pad)
 {
 // The track sparsely plays pads ranging from the gentle (drm)
 // for low threat, with harsher (vce) for heigher threats
 // Volume increases with mood and threat,
 // The interval is decreased with threat
 Volume(0.4)
 Variable(temp,0.0)
 Update
 {
 // Volume = 0.5 + 0.25 * (Mood + Threat)
 temp = Multiply(Mood, 0.25)
 Volume = Add(0.5,temp)
 temp = Multiply(Threat, 0.25)
 Volume = Add(Volume,temp)
 Interval = Random (4.0, 6.0)
 temp = Multiply(Threat, 2.0)
 Interval = Subtract(Interval, temp)
 }
 …

3.2.7 Intervals

Intervals represent a pause in the output of a layer, either between Voices if
specified for a particular voice or between iterations of a layer if in the main body.
Processing of a layer does not continue until a pause for the length of the interval
has taken place. The expression is evaluated anew each time.

A Scripted Sample-Based Music System for Game Environments using .NET

 16

3.2.8 Beats, BeatLength and BeatSynch

Beats are an alternative method of specifying intervals between periods of music.
Instead of directly specifying a length in seconds, the BeatLength is specified in
the Track, and a BeatSynch is given that measures an Interval in this number of
beats. The following specifies an interval of 0.3 * 16 = 4.8 seconds for the Guitar:

Track(Underwater)
 {
 BeatLength(0.3)

 AleotoricLayer(Guitar)
 {
 BeatSynch(16.0)
…

3.2.9 Effects

The script also specifies Effects, which are preset sequences of setting changes
applied to AleotoricLayers (not LoopLayers). An Effect has one or more Stages,
each of which may make changes to the panning or volume for that layer. After a
specified delay, the effect moves onto the next Stage in the sequence.

Effects are applied to the output of a Layer; they essentially take this output and
repeat it several times3. How many times is defined by the number of Stage
declarations in the Effect. As an example, a simple effect might “bounce” the
sound from one side to the other, slowly fading the volume at the same time.

Each Stage contains a declaration for the Volume to play the output at, the Pan
value (how far to the left or right of centre the sound should be played) and either
a Delay or TempoDelay, indicating how long to pause before moving on to start
the next effect. Values may be expressions or constants. TempoDelays are present
in effects intended for layers using the BeatSynch and are measured in beats as
defined in the Track currently playing, whilst Delay is measured in seconds.

Effect(RandomPad)
 {
 // Produces randomly panned echoes, staggered at close
 // random times
 Stage
 {
 Pan(Random(-1.0,1.0)) Volume(1) Delay(Random(0.25,0.4))
 }
 Stage
 {
 Pan(Random(-1.0,1.0)) Volume(0.92) Delay(Random(0.25,0.4))
 }
 Stage
 {
 Pan(Random(-1.0,1.0)) Volume(0.84) Delay(Random(0.25,0.4))
 }
 }

3 The original specification incorrectly identified effects as altering the parameters of one output –
the results of this misconception are detailed in the sections on Implementation and Testing.

A Scripted Sample-Based Music System for Game Environments using .NET

 17

Chapter 4 - Requirements

Having analysed the MNG file format, we proceeded to consider the potential
users of the proposed system and their requirements – as time was limited, it was
considered foolish to concentrate on features unwanted by users. However, as
often happens the requirements were not clear, and several iterations of prototypes
would prove to be necessary before a final list could be made.

4.1 The Users

No project can succeed without considering its users. In this case, the prime
targets for the tools to be developed were metaroom developers. However, during
requirements solicitation two further group of end-users were identified –
software developers and general users, as detailed below.

4.1.1 Metaroom Developers

A metaroom is the basic unit of third-party world expansion to the Creatures and
Docking Station games. Metarooms are expansions to the living space within the
game; high-quality, original metarooms are in great demand by players.

At the time of writing, over twenty metarooms have been created, and several are
in development. It is possible for metaroom authors to specify music for the
various sections of the rooms in the map editor. However, none of the metarooms
were able to incorporate their own music, as no editors were available. The reason
for this was that the specification of the MNG music format was unknown, unlike
those for other file formats used in the games, which were available from the
Creatures Development Network (Gameware 2004).

The initial objective for this project was to identify the format of MNG files and
proceed to develop an editor for use by these developers.

4.1.2 Other Creatures Developers

While discussing the project, other developers in the Creatures community
expressed an interest in developing programs that could read the MNG format, for
their own purposes. Some developers intended to make their own MNG handling
routines, and for these a detailed file format specification and script decryption
algorithm would be sufficient, but others desired a more comprehensive solution.

To this end it was decided that the applications to be developed should be split
into components, and source code should be freely-available for non-profit use at
the SourceForge online code repository (SourceForge 2003). This also provided a
secondary backup for the project source files. The need for proper documentation
of the code was also strengthened by the presence of this user group.

A Scripted Sample-Based Music System for Game Environments using .NET

 18

4.1.3 General Users

In addition to the separate developers, several Creatures users mentioned that they
would enjoy listening to the music outside of the game. Indeed, some had
separately noticed that the MNG files contained music samples, and extracted
them with a sound editor – however, not being programmers they were not aware
of the presence of the script, nor would they have been able to play the music if
they discovered it. Since we believed that metaroom developers would also find it
useful to be able to preview their music outside of the game, creating an accessory
that played selected tracks in the background was added as an objective.

Potential users covered a wide range of ages and ability – from seasoned
Microsoft programmers to children barely into their teens and inexperienced with
anything but games. Of course, all user groups appreciate simplicity, and so an
important aim for the player was for it to “just work” – there should be no
confusing options to get in the way. However, it still had to be powerful enough
for metaroom developers to be able to test their music.

4.2 Requirements Solicitation

Requirements solicitation was not especially challenging, as the community was
known and readily accessible and we were generally aware of the projects being
undertaken. In particular, we were able to pose informal questions to potential
users on a regular basis from the start, and could also work with the creator of one
of the most advanced “metaroom” projects, C12DS (Creatures 1 to Docking
Station), for which a prototype of the editing tools was successfully used.

The main difficulty encountered was in explaining to others the capabilities and
limitations of the MNG format and the Creatures sound system – some people
expected too much from the software, while others thought that (for example) it
was restricted to playing a single stream of recorded sound per track, in a similar
manner to CD audio.

4.3 Throwaway Prototype

It was clear from the beginning of the project that there was insufficient
knowledge of the problem to immediately implement an optimal solution.
However, users are notorious for not knowing exactly what they need, so rather
than just asking them what they thought they would like, we decided to provide
them with a basic editor offering the minimum features required to make and
modify MNG files (but not the expected levels of robustness or performance), and
invite them to comment on its features and suggest possible improvements.

4.3.1 Rationale

Throw-away prototyping has the well-understood advantages of allowing
designers to identify requirements and test assumptions before committing to a
final specification or writing any lasting code, and without polluting the final
product with non-production-quality code (Brooks 1995). In this case it also had
the fortunate side-effects of allowing “power” users to modify MNG files well

A Scripted Sample-Based Music System for Game Environments using .NET

 19

before the tools provided by this project would otherwise have been available, and
allowing us to create custom test cases with relative ease.

4.3.2 Construction of the Prototype

The prototype was constructed in Visual Basic, as the issues cited against its use
for the main project were not an issue for the purposes of the prototype. Using a
different language also enforced the philosophy of “throw the first one away”.
The only elements shared between the prototype and latter versions were a few
algorithms used for loading MNG files – and, of course, the lessons learnt. The
prototype was constructed as the preliminary investigation was underway, and
formed a convenient test-bed for theories on the construction of MNG files.

Features of the throw-away prototype included:

• Loading and saving of MNG files
• The ability to add, remove and rename samples
• Manual modification of the music script by loading a script file
• No attempt at parsing the script other than to retrieve sample names
• No attempt at providing a good implementation in terms of robustness,

modularity, maintainability or commenting

Figure 4-1: The prototype editor was functional, but not generally usable

4.3.3 Questionnaire

Sample users were drawn from the Creatures community by announcing the
objectives of the project and inviting interested parties to try out the prototype and
comment on its features and shortcomings (see Appendix C). There was an known
element of bias in this – only users most comfortable with installing unfinished
software were likely to respond, and we judged that these were also likely to be
the most technically able. For this reason some of the more advanced suggestions
were later given a lower priority in preference to usability requirements.

A Scripted Sample-Based Music System for Game Environments using .NET

 20

4.4 Requirements Analysis

4.4.1 Operating Environment

The tools should be capable of running on any system with support for the .NET
runtime and Microsoft’s DirectSound libraries. It would be an additional bonus if
the editing tools worked without DirectSound, as non-Windows platforms are not
likely to support the Managed DirectSound extensions.

4.4.2 Limitations of End Users

The majority of Creatures players are children in their early to late teens. While
many users of the editing and playing applications will be familiar with scripting
languages, possibly through use of the Creatures scripting language, CAOS, some
may not be particularly able with technology. As a result, while modifications to
the game are usually performed by more technically-minded users, some concepts
are likely to require careful explanation.

4.4.3 Task Analysis

Users wish to:
• Play music
• Create and edit music files, by

o Adding and replace samples in music files
o Editing the script to change how the music is played

Developers wish to:

• Understand how MNG files work
• Develop applications that use the MNG format

o Open MNG files
o Access and modify sample data
o Access and modify the script,

• Both in raw and tree form

4.5 Requirements Specification

1. The simple MNG editor shall
a. Allow the user to load, save, and create new MNG files
b. Allow the user to add and remove samples to, rename, and export

samples from the MNG file
i. The samples shall be in WAV format

ii. Samples may be added and removed by drag and drop
c. Provide for manual editing of the script file
d. Allow the user to validate the script to ensure that it is

(syntactically) correct
e. Warn the user if they attempt to save a file which

i. Does not parse as a syntactically-correct script,
ii. Refers to a sample or effect in the script that is not present,

or
iii. Contains a sample that is not referred to in the script

A Scripted Sample-Based Music System for Game Environments using .NET

 21

2. The MNG player accessory shall

a. Let the user play linearly through a MNG file
b. Support random play of either all or a subset of all tracks in a

MNG file
c. Provide controls for volume and the commonly-used “threat” and

“mood” variables

3. The advanced MNG player/editor shall
a. Provide all features of the simple editor
b. Provide a user interface allowing graphical editing of the MNG

file, such that the user need not learn the scripting language
c. Let users preview the music tracks

4. The MNG script parser component shall
a. Accept a (decoded) MNG script or script fragment as input, and

return a abstract syntax tree representation
b. Throw suitable errors if an error in parsing occurs that

i. Indicate where in the file the error was detected
ii. Gives a best guess as to the nature of the error if possible

5. The MNG file filter component shall

a. Provide an abstract interface for
i. loading and saving MNG files

ii. accessing and modifying the script
iii. accessing, modifying, adding and removing samples

b. Transparently decode and encode the script text

6. All programs and components shall
a. Be written in fully CLS-compliant VB.NET or C#
b. Conform to “best practices” in respect to design, commenting and

user interfaces, as much as is possible given the time constraints
c. Function intuitively, following standard metaphors for the user

interface elements used
d. Be capable of using all MNG files included in the game titles

Creatures 2, Creatures 3 and Docking Station
e. Be provided with documentation appropriate to the intended users

4.6 Requirements Review

Having completed the requirements analysis phase, we had a reasonably complete
specification to follow. At this point it was clear that there was a need for several
components to fulfil the basic requirements:

• A low-level component capable of loading MNG files from disk and
converting them into an internal representation for use by other
components, and also of saving modified files to disk

• A scripting component able to parse a whole script file (and preferably
portions of one) into an internal representation, and capable of generating
a script from such a representation

A Scripted Sample-Based Music System for Game Environments using .NET

 22

• A component that worked with the scripting and file components and the
operating system to play music

• A basic editor allowing the creation of new files, the addition and removal
of samples and text editing of the script

Other desired end-user applications were a player with no editing functions,
intended merely to load and play MNG files, and a graphical editor, aimed at
allowing users to create modify MNG files without having to know the underlying
scripting language.

4.7 Test Plan

The Creatures games came with several music files. Our plan was to test loading
and saving these files and confirming that they were identical and that the parser
verifier confirmed their validity, editing one by adding and removing samples and
changing the script, and saving the result, then attempting to load it again.

Each file contained a number of tracks – about 40 tracks in total, and so to test the
player component we proposed playing each of these tracks. However, each layer
in each track could contain script instructions that were only set to trigger when
variables such as “Mood” were at certain levels. It was therefore necessary to
analyze each script to determine these trigger points and test these tracks multiple
times with these variables set at appropriate levels to cover all paths. As the player
component was designed with easily-accessible controls for these variables, this
practice did not significantly increase the duration of testing, while uncovering
bugs which might not otherwise have been found.

A Scripted Sample-Based Music System for Game Environments using .NET

 23

Chapter 5 - Design

It should be emphasised that the design of the programs involved was an iterative
process. While the specification of tasks was reasonably clear, the most
appropriate design for an interface or algorithm was not always so clear-cut;
therefore after the initial throw-away prototype had been completed, used and
discarded, the design was advanced through evolutionary development.

5.1 User Interface

Understanding that the underlying components are not what the user sees as the
program (“The user interface is the program” – Alan Kay), our first thought on
design was for the user interface. Having previously identified the required
features, user interface design was a matter of deciding how these requirements
could best be provided to the user with the tools available. Care was taken to
follow the best practices of user interface while considering the design,
particularly with respect to discoverability, where the objective was not to require
the use of documentation at any point.

5.1.1 MNGPad

We decided that a very simple interface would be most appropriate for the basic
MNG editing applet, as the intended use was quick editing of MNG files by
relatively advanced users, similar to the Windows Notepad accessory. Bearing this
in mind, we named the tool MNGPad.

Figure 5-1: The MNGPad user interface

A Scripted Sample-Based Music System for Game Environments using .NET

 24

The MNGPad user interface consisted of two panes. The left pane contained a list
of the samples present in the MNG file, the right pane held the script text. Menus
at the top allowed the user to save, load or create new MNG files, and a single
toolbar at the top offered access to commonly-used menu functions, as well as a
button for basic validation of the script. This design reflects the limited features
and intended use of the applet.

Formatting of the user’s script was preserved by avoiding any conversions from
the internal abstract syntax tree to text format, as we felt this was an important
part of making the editor comfortable to use. Tool-tips were used to enhance
discoverability for features such as script validation and the drag-and-drop
functionality.

5.1.2 MNGPlayer

The MNGPlayer accessory also featured a
relatively plain interface. Files could be
opened via dialog box or dragged onto the
player. Once loaded, the tracks were
presented to the user as a list. Multiple
tracks could be selected for simultaneous
playback if desired. Playback could be
started, paused, resumed and stopped by
pressing the appropriate buttons.

The three main variables present in the
Creatures scripts – Volume, Mood and
Threat – were displayed as sliders which the
user could drag to set a desired value; the
precise value being displayed while the user
dragged the slider thumb. As it was designed
for unobtrusive background playing, the
applet could be minimised to the system tray
whilst still playing the music.

Figure 5-2: The MNGPlayer user interface

5.1.3 MNGEdit

MNGEdit was to be a more powerful and fully-featured editor, offering full drag
and drop high-level editing of structures such as tracks, layers and effects, as well
as the ability to play the music whilst it is being edited. The user interface design
reflects this, expanding the sample list to a tabbed pane allowing the user to
switch between the samples tree and lists of effects with properties, and replacing
the script editing pane with a layered visual display of tracks.

5.2 MNG Parser Design

Early on we decided that the player component would parse the script file once
and then work off an abstract syntax tree. This approach was considered more
flexible and efficient than reparsing the tree from the script each time – parsing
the tree once and working on an internal tree structure had only the initial cost,

A Scripted Sample-Based Music System for Game Environments using .NET

 25

plus the result was easier to modify programmatically and output is a trivial
matter of walking the tree; although it might be considered a waste to keep the
tree in memory, in practice the size of the tree was not significant relative to the
size of the samples.

Designing and building a full lexer/parser engine was beyond the scope of this
project. Fortunately there was no need to do so, as the C# compiler tools (Crowe
2004) provided a comprehensive parser engine, taking as input a lexical and
grammatical definition of the language, and outputting C# code to produce the
abstract syntax tree.

5.2.1 Nodes

Syntactic elements in the script were represented internally by nodes. The base
class returned by the parser was an instance of Node, and numerous subclasses of
this class were created to describe the various expressions, effect, track and layer
declarations and update assignments. Where appropriate these nodes contained
lists of sub-nodes – for example, each EffectNode contained a list of StageNodes.

5.2.2 The Visitor Class

An abstract Visitor class (Gamma et. al. 1995) formed the basis for classes
intended to walk the AST – for example, the various Reader classes mentioned
below in MNGEngine. This class contained methods for each subclass of Node,
intended to be called when the Visit method was called on that particular Node –
for example, the Visitor.VisitTrack() method was invoked when
TrackNode.Visit() was called. The default implementation of each method was
empty, so that if a Visitor encountered a Node that it was not intended to deal
with, it did nothing.

5.3 The MNG File Filter Component

The file filter component was designed to present an object-based front-end to a
MNG file, offering both an in-memory representation as well as the ability to save
and load files. Classes such as Sample that were intended to be used but not
created by client applications had access to their constructors restricted with the
Friend modifier. Similarly, clients were not permitted to directly add Samples to a
SampleHashtable4 but instead were forced to use a method which verified the
integrity of the WAV files being added. Initially the component used a custom
parser to detect the sample names (required because the names were only stored in
the script) – later the design was changed to make use of MNGParser for this task.

5.4 Structure of the Music Engine

The music playing engine component (MNGEngine) was the most complex
component in terms of design. Difficulties arose both from the inherent
complexity of writing a script-based music playing component, as well as the lack

4 It should be noted that this protection is not totally secure – a client could bypass it by using
.NET reflection to make any calls it desires (Brown 2004). We assume that if a developer chooses
to do so, then they are prepared to deal with the consequences.

A Scripted Sample-Based Music System for Game Environments using .NET

 26

of understanding surrounding the script at the beginning of the project. The details
of the engine’s design changed throughout the process of development, although
the basic architecture remained relatively constant.

5.4.1 Readers and Players

It would have been possible to use one class for both reading from the tree and
playing, but we felt that the clarity of the code would have suffered – it made
sense to separate the two operations. For this reason the functionality was
separated into Reader classes (which were subclasses of the Visitor class declared
in the MNGParser component), and Players.

The Readers were responsible for reading the tree by calling the Node.Visit()
method of the appropriate node, with themselves as the Visitor parameter. The
nodes then called back the appropriate Reader, which either recorded a value (for
those nodes which indicated attributes) or descended further into the tree. For
example, TrackReaders created an array of LayerPlayers, adding one to the array
each time processing reached the
TrackReader.Visit[Aleotoric|Loop]LayerPlayer() method.

This data was stored in the Player – each Player created an instance of the Reader
on initialization and then reads out the data. Once initialized, the Player.Play()
method was called to begin playing the music. Player.Reset() stopped any current
playback, and Player.Pause() temporarily halted it until called a second time.

5.4.2 The Sound Manager

Sounds were handled by a special SoundManager class. The main objective of
this was to make it easier for future porting efforts – in particular, porting to other
platforms using a different sound output system. The SoundManager was
initialized by the file-loading routine, using the Singleton pattern (Gamma et. al.
1995) to ensure that only one instance of the class would ever be present.

In an attempt to reduce the memory use, playback buffers handled by
SoundManager were not created by the VoicePlayer class until the voice was
played, and were removed when the sound was reset.

5.4.3 Threaded Playback Architecture

We believe the original Creatures music engine had run as part of a continuous
loop within the game engine. Being a game, there was no problem in using up all
available CPU time while running, a luxury not considered acceptable for this
project. It was therefore decided to base the playback of sounds around a threaded
architecture in an attempt to preserve interactivity while using as little CPU time
as possible.

The .NET runtime provides a thread pool, to which client applications can
delegate work items to be performed at a set time. However, this was not
considered suitable for the execution of music scripts, because no facility was
provided to suspend or abort threads, and the number of concurrent threads was
bounded by the thread pool – there was therefore potential for exhaustion of this

A Scripted Sample-Based Music System for Game Environments using .NET

 27

thread pool, and subsequent delay of processing. Instead, each layer was given a
thread (later, a set of threads, if effects were in operation) – thus if a voice were
followed by a pause it would not pause the other layers playing simultaneously.

A decision had to be made as to whether to have a thread sleep within the
playback subroutine or to set a timer to complete the subroutine. We decided to
use the threading sleep function because:

• It simplified the programming model
• It removed the need for yet another thread for the timer, which would be

taken from the timer pool (with the previously-mentioned disadvantages)

5.4.4 Interpreter Design

Many of the music scripts relied on update processing. These updates could affect
the volume, panning and interval between sounds, as well as passing on the results
of calculations as variables to future updates. Certain variables (in particular,
Mood and Threat) were designed to be altered by an external program and read by
the script, the results varying the sounds played and/or the manner of their
playback – for example, increased Threat might cause a decrease in the interval
between notes, or cause a set of new samples to begin playing.

A question arose during design as to whether the evaluation mechanism for
Add/Subtract/Multiply/RandomNodes should be within the interpretation and
playback engine or within the tree component itself, as a GetValue() method that
was part of the Node objects. We decided that it was more appropriate for the
engine to handle this task, as the tree was intended to be a passive data structure –
“smart” nodes would defeat the point of this. Moreover, it would mean that future
add operations might be restricted to those provided by the nodes. In the final
design, only ConstantNode objects were defined to have an inherent value.

The expression evaluation process was operated as a stack machine. The base data
type of the machine was the Single floating-point number. These values were
pushed onto and popped off of an stack internal to the evaluator as appropriate to
the nodes encountered during the evaluation. For example, if an Add instruction
was encountered, the two sub-branches of the node would be visited – resulting in
two values being pushed onto the stack – then the add operation was performed by
popping these two values, using them as operands, and pushing the result onto the
stack. Constants and variables formed the leaves of this tree, being elements that
just pushed values onto the stack. In this way expressions of arbitrary complexity
could be evaluated.

A Scripted Sample-Based Music System for Game Environments using .NET

 28

Chapter 6 - Implementation

6.1 Parser Construction

Our first main development task was to define the tree structure using the Visitor
pattern. This resulted in one base Visitor class, and a set of classes deriving from a
base Node representing the various semantic elements that could be present within
a script – for example, an EffectDecNode represented an effects declaration,
which contained a list of StageNodes, each of which had sub-Nodes relating to the
settings for that stage.

We then proceeded to craft the input scripts to the lexer and parser generator,
testing it with sample scripts that had been obtained using the prototype. At first,
work on the parser was slowed by the need to perform external complication of
the parser into C# by running a batch file. We found it possible to streamline the
build cycle by incorporating the parser generation within the project through the
use of pre-build steps in the Visual Studio environment. However, the parser
generation still took over 20 seconds, an impediment to quick test cycles.

In an attempt to reduce the time taken, use was made of a parser generation flag to
avoid generation of an LALR(1) parser and instead produce an SLR(1) parser,
cutting generation time to less than two seconds. This increased productivity
while retaining the ability to create a full LALR(1) parser if required.

6.2 Handling the Lack of Parametric Polymorphism

One disadvantage of .NET is that it currently does not support generics, also
known as parametric polymorphism or parameterization by types. The
functionality is provided by templates in C++, although the concepts and
implementation are slightly different. Kennedy and Syme (2001) have extended
this idea to the .NET platform in a runtime-efficient manner, unlike the Java
implementation (Bracha et. al. 2001) which converts to the generic Object at
runtime. Unfortunately this efficiency comes at the cost of incompatibility with
previous versions of the .NET Common Language Runtime, and so will not be
available until the CLR 2.0 release in late 2004.

As a result of this lack of generics, the generic list and collection classes provided
by the .NET Framework and used throughout the project (such as ArrayList and
Hashtable) operated on elements of type Object. This had both a performance and
a type-safety impact. The performance impact was ameliorated by using the
VB.NET DirectCast operation to avoid type coercions performed by the generic
CType conversion function. The type-safety issue was attacked in several ways:

• Wrapping the class in such a way that only the appropriate types were
accepted – for an example, see the SampleHashTable class in MNGFilter

• Checking the type of each element extracted from the class to ensure it
was of the correct type – used by SampleScanner

• Checking that no code accessing the list was adding an unexpected type

A Scripted Sample-Based Music System for Game Environments using .NET

 29

6.3 General Issues

6.3.1 Thread Handling

The first attempt at threading the layers started a new thread when playing the
layer and stopped it with Thread.Abort(). This worked but caused a noticeable
delay on stopping the music, as aborting caused an exception to be thrown, and
the main UI thread was required to wait for the abort to complete. This was
avoided and both overall and perceived performance improved by altering the
playback thread to wait on an event object when pausing between samples and
exit if the event was signalled. The pause function was implemented in a similar
manner, causing the threads to wait on an event object until un-paused.

It was also found necessary to boost the priority of the playback threads slightly to
ensure that they received attention promptly upon being removed from the Sleep
state when other tasks with high priorities were present. Since very little was done
in each time-slice (typically just scheduling the playback of a single sound) before
the processor was yielded by the thread, this did not generally interrupt the normal
functioning of the system (but see section 7.4).

6.3.2 Secure File Handling

Library file operations such as Sample.Export() and MNGFile.Load() were
initially designed to use filenames. However, we realised that this would preclude
their use in situations where security is paramount. In this case, the use of files is
usually restricted to opening file Streams via system file dialog boxes. For this
reason these file-handling methods were converted to use the Stream class.

6.3.3 Global and Local Variables

Some variables are local to the layer currently executing. However, there was a
need for globally modifiable variables such as “Mood”, “Threat” and a global
volume control. To solve this, we implemented a VariableHashtable subclass of
Hashtable that combined two sources – its base, and a second hashtable shared
among all instances of this new class. This second hashtable was externally
modifiable via the MNGEngine.GlobalVariables property. The engine could only
make modifications to the first hashtable, but took variables from both hashtables.
In this way the global variables could be modified at runtime while the layers
were playing, and changes were picked up immediately.

6.4 Packaging, Documentation and Distribution

6.4.1 Setup

Setup was implemented using the predefined setup project in Visual Studio. The
tools were distributed in MSI format, the installer creating shortcuts to MNGPad,
MNGPlayer and the MNGTools documentation on the user’s Start menu.

A Scripted Sample-Based Music System for Game Environments using .NET

 30

6.4.2 Documentation

Many such projects fail to aid their intended user base, not because of a lack of
coding skill on the part of the programmer, but because the users (who may
themselves be skilled developers) cannot understand how to use the material they
have been given. We realised at an early stage that comprehensive documentation
for both users of current MNG applications and future developers would be vital.

User documentation was needed for the two user applications, MNGPad and
MNGPlayer. MNGPlayer was relatively easy, but MNGPad required a reasonably
detailed, yet approachable guide to creating music scripts.

Developer documentation covered the MNGTools suite, in particular
MNGEngine, MNGFilter and MNGTree. Construction of the documentation was
assisted by the use of an open-source project known as NDoc (NDoc 2004).

NDoc was designed to process the XML documentation produced by Visual
Studio for C# into documentation, thus allowing developers to write
documentation into their code modules, in a similar manner to Javadoc (Sun
2004b) - in fact, it can output to that format, among others. We wished to use
NDoc to output HTML/Compiled HTML (.chm) documentation, providing
developers a familiar help experience to that in Visual Studio. Unfortunately
Visual Studio does not yet natively support XML documentation generation for
VB.NET. However, an add-on called VBCommenter (GotDotNet 2004) was
found to provide equivalent functionality and so was used to create the required
XML files.

6.4.3 Hosting and Distribution

Hosting was provided by SourceForge (2003). The source code to the components
and applications was distributed under the GPL, allowing fellow developers to
create free tools based on our work.

A Scripted Sample-Based Music System for Game Environments using .NET

 31

Chapter 7 - Testing

7.1 Methodology

As previously covered in our test plan, testing was an easy matter in some
respects – the Creatures games provided a reference implementation, with a
variety of samples demonstrating the capabilities and limitations of the music
system. In theory, all that was necessary was to ensure that the output was as
expected given the input, and in general this was the case for tests involving the
file and parser components and the editor.

In contrast, examining the results of auditory tests proved difficult as their output
was in the form of sound intended to be sent straight to the speaker system.
Moreover, the music was designed to have a random component, in addition to
the input of in-game variables whose values could not be precisely known, and
therefore it might be that one run produced significantly different output to
another.

For these reasons, sound capture software was in general not used for testing –
instead gross errors were diagnosed by ear, and where this was not possible
specific test cases were constructed to compare the performance in game with that
of the MNGEngine component.

For non-perceptive testing of the script interpreter, code was inserted into the
components to write interpreter operations such as assignments and whether or
not conditions for voice playback were being fulfilled when evaluated to a log.
This allowed us to decide whether or not the code was proceeding down the
correct path of execution, and in general aided the development of the engine.
This advantage became even more apparent when threading was introduced, a
development which caused single-stepping through execution to become
impractical – debug statements could be tagged with the layer name and effect
stage number, easing the task of identifying the sequence of operations.

A Scripted Sample-Based Music System for Game Environments using .NET

 32

7.2 Musical Output

No significant defects were found in the complex area of updates. However, while
testing effects, it became clear that an error had been made, not merely in the
implementation, but in interpreting the meaning of the script. The MNGEngine
audio output simply did not match that of the game.

Initially we had thought the stages to be indicative of shifting the Pan and Volume
settings for the affected layer’s output from each voice, shown below as (b). The
first implementation of this was clearly jerky in comparison to the game, so we
proceeded to try to smooth the output by interpolating between stages. However,
this also produced incorrect output, and we soon realised that the engine was in
fact playing copies of the same layer output, one copy for each stage.

Figure 7-1: Comparison of effect handling methods

A Scripted Sample-Based Music System for Game Environments using .NET

 33

At this point, a difficult decision had to be made. One choice was to attempt the
same as the original engine – to create a buffer filled with the output and then play
it at the intervals specified by the stages. However, this would have required
altering the model from playing samples directly to playing them to the output
buffer and then playing the output buffer multiple times. As DirectSound does not
offer access to this buffer we would have had to mix our sound, requiring the
addition of mixing algorithms to the system, which we wished to avoid.

The other choice was to add extra delayed threads to play the buffers again. We
decided to try this first, as we already had a threaded system to play layers. This
approach ran into two problems, and although the music produced did have
significant random quantities, was perhaps of academic interest, and could be the
subject of further research, it was not the objective of this project.

Firstly, the threads used separate variable stores and evaluation routines to ensure
that one thread did not interfere with the other; an example being a counter, which
would be incremented once by each delayed thread. Unfortunately, the separate
evaluation included separate random number generation, and combined with
scripts defining intervals based on these numbers, output from the threads fell out
of synchronization almost immediately. This issue was corrected by passing an
identical random seed to each of the threads to be used in construction of a
random number generator object. This caused evaluations to use the same
sequence of random numbers and thus achieve the same results if changes to
global variables over that time period were discounted; typically this was the case,
as effects tend to last no longer than three or four seconds.

Another more subtle effect caused even those stages whose layers were not using
random numbers to slowly drift out of synchronization. The underlying operating
system is not a real-time guaranteed operating system, and so sleep operations
may take longer than specified, particularly. This affected both the internal layer
thread delays, causing notes to be played later than intended, as well as the delays
between starting each layer-handler thread of an effect, causing the entire effect to
be delayed more than intended.

Combined, the above problems caused unintentional delays of the order of 40 to
100ms; enough to significantly affect the tone of the music, given that some
intended delays were no more than 200ms. These delays were corrected by
introducing code to measure the actual time elapsed and subtracting this from the
pause, rather than assuming that no time had passed except while sleeping. This
also allowed the player component to recover if a high-priority task momentarily
pre-empted it.

One final error was that the effect stages were computed only once, when starting
the thread controlling the stage, whereas in the game they appeared to be
computed each time the stage was run. This had no effect on the initial playback
of the layer, but when repeated it became noticeable on those tracks that used the
feature. The proposed fix involved moving such code to the thread handling the
stage and running it each time.

A Scripted Sample-Based Music System for Game Environments using .NET

 34

While not an error, the musical output of the player was significantly louder than
that in the Creatures games. We believe that this is either a deliberate reduction to
reduce the impact of the music, or a side-effect of gain-reduction performed by
the engine in the mixing phase to avoid clipping. However, metaroom developers
commented that this was in fact a help to them, as they could more clearly hear
how their music was working. Users were able to reduce the volume with a slider.

7.3 Usability Testing

Initially, MNGPad was designed to create a new MNG file on opening. However,
user testing quickly indicated that the first thing users did on loading the program
was to open a music file for editing; therefore it was decided to automatically
display the open file dialogue when starting the program, and allow the user to
cancel this dialogue if they wished to create a new file. A similar feature was
added to MNGPlayer.

In early iterations of the prototype tools it was found that the file load operation
could take significant time on computers with slow hard disks, during which there
was no feedback to the user. This was considered unacceptable and so a
LoadMNGProgress event was added to the filter component and fired before
loading each sample, which the client could then use to inform the user (for
example, “Loading sample 3 of 24”)

One external metaroom developer used the same name for different layers (by
copying and pasting the text). This caused problems because the game engine was
not designed to cope with this, although as the MNGEngine did not rely on the
name of the layer, it was not affected. The problem could be fixed by adding
semantic checks to the script, ensuring that layer names were distinct.

Users were slightly confused by the MNGPad validation errors, which gave line
numbers as zero-based rather than one-based.
Similarly, they felt that the caret should be
positioned before the error, not after it. The
required changes were simple but effective in
increasing usability of the software.

Figure 7-2: Users preferred
cursors placed before errors

7.4 Other Testing Results

We initially believed that volumes would require only one node to represent them
in the tree – after all, they were by themselves syntactically similar. However,
when creating a test Visitor to write out the music scripts, it became clear that
there was a difference between the two – the Volume attribute in a layer was
typically printed on its own line, while the Volume in an effect’s stage was
usually printed without a new line. To store this context purely to identify one
Volume node or another would have been against the principle of the code – such
context could more easily be detected at the parser phase. We therefore decided
that the Volume token would have two AST representations – the first for when it
was detected in an effect declaration, the second for when it was an attribute of a
layer. This representation allowed specific handling of both cases.

A Scripted Sample-Based Music System for Game Environments using .NET

 35

It was found that dragging MNG files onto the title bar of the applications did not
always work. This was because the file was a shortcut (a link to another file), and
while the file open dialogs dereferenced shortcuts, the drag-drop operation did
not. The use of third-party code was considered to handle these shortcuts, but
could not be included as a result of licensing issues.

Testing the save function with read-only files revealed an issue – by their nature,
read-only files cannot be written to, yet they are selectable in the file dialogs.
MNGPad was modified to query the user and then attempt to unprotect the file if
they chose to continue the save operation.

The multithreaded nature of the code required care in ensuring that thread-unsafe
procedures were protected by synchronization mechanisms. In one case (the
allocation of SecondaryBuffer objects in the SoundManager class) this was not
done. This caused occasional index out of bounds errors, since one thread was
creating a secondary buffer while another thread was accessing the sample’s
memory stream to do the same thing. The chosen solution was to wrap the
location in a lock operation, such that the second thread had to wait for the first to
complete its operations.

During testing with the “release” version of MNGPlayer we found that the
Creatures 2 Volcano track would cause 100% CPU usage when it was played
with a certain Mood level. In this situation no sounds were played in one layer,
and no interval was set, so the thread cycled without yielding. This was
compounded by the fact that play threads were placed on a high priority to
improve timing performance, thus denying the CPU to any other applications, as
well as to the thread(s) of the controlling application (making it hard to close the
program). The “debug” version did not exhibit this problem because it contained
debugging output calls that yielded the CPU. This problem was only caught due to
our practice of analysing the script to detect trigger values for variables and
testing each case – it was not a typical situation. Our chosen solution was to yield
for a minimum amount of time each cycle, ensuring a window of opportunity for
other threads.

A Scripted Sample-Based Music System for Game Environments using .NET

 36

Chapter 8 - Conclusion

In this final chapter we reflect on our achievements, review critical design
decisions made during the course of the project, give an brief overview of current
user feedback, and offer suggestions for future work to build on our efforts.

8.1 Concrete Achievements

The stated goals of this project were to identify and document the MNG music
format and create tools with which others could modify and enjoy music in this
format. We have achieved these goals, creating the following concrete objects:

8.1.1 The MNG File and Scripting Format Specifications

A complete specification of both the on-disk layout of MNG files and the syntax
and semantics of the scripting language is present in this text and its appendices,
as is the algorithm required to decrypt the script. Previous to this project the file
structure and general format of MNG files was completely unknown; we have
provided the means for others to create programs using the format, should they
deem the following tools provided by us to be inappropriate for their needs.

8.1.2 MNGPad – A Basic MNG File Editor

MNGPad fulfils the needs of metaroom developers by providing them the ability
to examine and modify existing music scripts, add, extract and replace samples or
create entirely new music files for their projects. It also provides a validation tool
which may be expanded in the future to detect more subtle errors.

8.1.3 MNGPlayer – A Background Music Player

MNGPlayer allows users of the Creatures games to play the music without having
to play the game and providing a means for metaroom developers to test their
music files while the fully-featured MNGEdit is completed. It also serves as a
demonstration of the use of the MNGEngine library for developers.

8.1.4 MNGTools – A Library for MNG File Management and Playback

The MNGTools package is composed of four separate components:

MNGFilter

Responsible for loading and saving MNG files, MNGFilter is used in both
MNGPad and MNGPlayer. It handles the sample collection, which includes
importing and exporting samples, as well as encoding and decoding the script.

MNGParser

The MNG script parser was initially intended solely for the use of MNGPlayer,
handling the conversion of the music script file from plain text to the abstract

A Scripted Sample-Based Music System for Game Environments using .NET

 37

syntax tree representation. However, user feedback demanded a way to validate
scripts, and in any case it proved necessary to parse the script in order to identify
the names of samples – MNGParser proved to be faster for this than the ad-hoc
parser constructed for the prototype.

MNGEngine

As the player component of the suite, MNGEngine is responsible for taking a file
and AST representation of the music script and turning this into audible sound. It
is assisted in part by the DirectSound library, which handles music mixing and
playback – MNGEngine schedules playback of the samples, which requires it to
run an interpreter for the script updates as well as keep track of layer variables.
It is capable of playing multiple layers and multiple tracks in real time.

MNGTree

The MNG script tree library is used by the MNGParser and MNGEngine
components. This component is not particularly complex, being mostly a library
of node classes to be read and modified by other components, but it was essential
to get it right early on – and in particular, the Visitor class it contains, which is
subclassed to make the various Reader and testing classes.

The tools are compatible with programming languages capable of using COM
components, such as Visual Basic, C++ and Delphi, as well as with all .NET
languages. As with the applications, they are released under the GNU GPL and
available online. (MNGEdit 2004)

The MNGTools documentation should also be considered an achievement, as we
believe it adds significant value to the project. Lack of documentation is a
deficiency in many third-party tools – we consider it to be essential, particularly
for developers who may not wish to read the code to understand what it does.

8.2 Review of Design Decisions

Several design decisions were made during this project. It was possible to make
some early on; others only became apparent as details of the implementation were
being considered.

8.2.1 Use of the Parser Generator

The decision was made early on to use an external parser generator rather than to
attempt to parse the MNG script through ad-hoc methods. We believe that this
was by far the better choice. Although requiring some research to setup and use
the tools, the parsing system proved well-matched to the language, and the time
spent was more than offset by the benefits of a relatively comprehensive, mature
and well-tested lexer and LALR(1) parser generator.

One downside to the use of this parser was that both the generated parser and the
parser runtime were quite large in comparison to the executables and other
components. This was partially offset by the provision of a “runtime” parser

A Scripted Sample-Based Music System for Game Environments using .NET

 38

library of reduced size – in addition, the parser proved highly compressible in
distribution. In general, overall size was not a major concern considering the disk
and memory requirements of the samples themselves, but the size of the installer
was a concern for a program intended for online distribution.

8.2.2 Use of the Visitor Pattern

The second decision, to use the Visitor pattern on a tree representing the script
structure, should also be considered a success. Use of the pattern turned the
creation of new operations on the tree into a simple matter of subclassing the
Visitor and overriding the necessary methods, and enabled the rapid creation of
multiple tree readers – the sample file name scanner took ten minutes to
implement and worked first time. It also allows for reuse of the MNG tree
structure by other programmers. We therefore agree with the assertion that this is
an appropriate design to use when constructing interpreters.

8.2.3 Choice of Language and the .NET Runtime

Having chosen .NET, there was in theory no restriction on the language used – all
languages compile to compatible bytecode. However, for the purposes of ease of
development the choices were restricted to those supported by the development
environment. In effect, the choice of language made little difference – C# was
required for the parser, while Visual Basic.NET was chosen based on ease of
development, and few problems were encountered in using either of them.

The .NET Framework is provided with the installation of the runtime and so is
available to all .NET programs. Access to such an extensive class library meant
that no time needed to be spent creating or debugging hash tables, file I/O
algorithms or the like – only code germane to the project was required. This led to
increased productivity and so enabled the implementation of a rich feature set.

The most pressing concern was performance – garbage collected languages have a
reputation of problems in this area. However, this concern proved unfounded, as
garbage collection rarely took more than 0.5% of process CPU time. We believe
current garbage collection algorithms are well-equipped to handle almost all types
of application, as long their performance characteristics are considered when in
use. Moreover, much of the work in mixing and output of samples could be
handed off to the native libraries which in turn delegate to the sound hardware,
further boosting performance – in our tests the player tool less than 5% of CPU
time on most tracks, and was even able to play all 19 music tracks in the
Creatures 2 music library simultaneously, while leaving half the CPU time idle.

A more pressing issue was the requirement for the .NET runtime and libraries on
the user’s machine. There was considerable resistance from some users to
download a 20Mb system update for no clear benefit. In retrospect this could have
been anticipated – many home users are still on modems, for which this is almost
an hour’s download. Overall, though, we believe the language and .NET runtime
were a suitable choice despite this disadvantage. It would not have been possible
to achieve as much in the allocated time without it.

A Scripted Sample-Based Music System for Game Environments using .NET

 39

8.2.4 Use of DirectSound

DirectSound offered a mature, low-latency output mechanism and few difficulties
were encountered when using it. CPU usage was in general very low, although
some of this can be credited to the advances in sound technology – current
hardware is well-suited to the task of playing multiple streams of sound.

The use of DirectSound has perhaps limited the portability of the solution, but the
code using it has been isolated into the SoundManager class to allow the future
development of a replacement, and so we believe this disadvantage is minimal.
Indeed, its model of sound output based on buffers should be portable, as this
paradigm is common among sound libraries.

8.2.5 Choice of a Multithreaded Effect Architecture

During testing it became clear that the support for effects was incorrectly
implemented because of a misunderstanding of the meaning of the script. Fixing
this to match the game would have required a copy of the post-mixed sound
stream for repeated playback. Unfortunately DirectSound did not give access to
the output of its mixing process for capture, and so this made it impossible to
dynamically redirect the sound. Mixing sounds was against one of the objectives
of this project, but the trivial algorithm is not particularly complicated to
implement or CPU-intensive, and so it was considered as a serious option.

This choice was driven by time pressures. Given sufficient time, it is probable that
we would have chosen to pre-mix the sounds in a similar way to the original game
engine, to reduce the potential load on the CPU and hardware sound buffers.
However, at the time the problem was discovered, making drastic changes to the
structure of MNGEngine could have jeopardised its completion date. The layers
were already being played by threads, and adding another to start new layer
threads at set periods was a relatively simple change which did not require
altering the way in which sounds were played.

In retrospect, this problem highlights the importance of a proper specification, and
the cost of changes to that specification and design late in the project. In this case
the specifications were sufficiently unclear to make this a hard problem to catch,
but additional testing of the specification by constructing test cases in MNGPad
before starting to implement MNGEngine might have caught the problem earlier.

8.3 Review of Implementation and Packaging

8.3.1 Music Playback Engine

In general we feel that MNGEngine is a good solution to the objective of being
able to play MNG files. It does not use up excessive CPU time in processing the
MNG files, although it relies on the ability of the underlying framework and
operating system to create and dispatch threads quickly, which may not be
possible in all circumstances. Its main flaw is that it can consume a very large
amount of memory, although this is dependant on the tracks that the user chooses
to play. While to an extent this is unavoidable considering the nature of the music,
the situation could certainly be improved.

A Scripted Sample-Based Music System for Game Environments using .NET

 40

8.3.2 MNGTools Developer Documentation

The documentation process added significantly to the time and effort required to
complete the tools, but we believe that strong documentation is essential if code is
to be used by others who may not be familiar with the issues. NDoc streamlined
the build process, and enabled output of professional quality in terms of look-and-
feel with little effort. Documentation activities also forced us to consider how
other developers might wish to use our work, sometimes leading to architectural
changes to make the component interfaces more developer-friendly.

8.4 User Feedback

Initial user feedback has been very positive, both in anticipated and unanticipated
ways. As expected, metaroom developers were eager to customize the user
experience by adding sounds to their projects, and we have already received two
custom music files intended for new metarooms (one user’s quote: “This music
really adds something more to the room – it’s got the right atmosphere now”).
Others simply enjoyed listening to the music outside of the game, without the
game itself slowing down their computers. One developer has begun to use the
specification provided in this document to create their own programs, while
another is working on the published source code. Unanticipated uses included
exporting the samples for use in Creatures-themed web sites, and importing
favourite Creatures 2 music into Docking Station.

8.5 Future Work

8.5.1 MNGEdit

The stated goal of MNGEdit was the ability to edit MNG files without knowledge
of the underlying scripting language. As such, it was envisaged as an an ideal
interface for those users who are not interested in delving into complex scripts,
and would therefore find MNGPad unwieldy or unusable. Unfortunately it was
not possible to realise this program within the time scope of this project.
However, we believe that with a solid music playback and file handling library,
the future development of such a tool is not unfeasible.

8.5.2 Development of MNGPad

We assert that MNGPad is sufficient for the creation of any MNG file. However,
there is much that could be done to improve its usability and functionality without
compromising its objective of being a fast text-based editor. Future developments
could include syntax highlighting, searching, and more specific error messages for
syntax error handling (which would require work on MNGParser to support error
productions), and possibly semantic checks for errors such as duplicate layer
definition names or declaring a Voice using a Wave that does not exist.

8.5.3 Extended User Usability Testing

For the most part, testing on this project was restricted to confirmation of the
correctness of functionality. We are well aware that developers are not able to
fully test the usability of their own work, and although some remote testing was

A Scripted Sample-Based Music System for Game Environments using .NET

 41

performed by sending the distribution to power users and eliciting their
comments, we feel that more testing aimed primarily at usability targets would
reap rewards. Getting non-technical users to attempt to create their own music
could be an excellent way of testing the quality and appropriateness of the
editing/playback applications and their supporting documentation.

8.5.4 Development of the MNGTools suite

Improvements to the user applications will necessarily drive innovation in the
underlying tools library. As previously mentioned, the parser could be modified to
handle error productions, allowing it to be more resilient in the face of user error.
The playback engine might be altered to implement the premixed-buffer approach
to effects, which could significantly reduce memory requirements. Alternatively,
the loading of samples could be delayed, or the samples could be stored in so-
called weak references that do not prevent the objects they refer to from being
garbage-collected when necessary. Additional effects could be added to the
language to directly leverage the abilities of the DirectSound library, although
these would of course not be available to those creating music for the Creatures
games. Proper support for externally-modified variables (a-la Mood and Threat)
could also be added.

8.5.5 Portability

Portability was not a stated objective of this project, since only one of the games
concerned ever ran on a non-Windows platform and the vast majority of target
users run Windows as their primary operating system. However, in consideration
of the fact that many Creatures developers use Linux, and that the “Rotor” .NET
runtime supports FreeBSD and Mac OS X, it would be desirable to have the
MNGTools suite run under multiple platforms.

A portable sound library would be the main component required, and the Simple
DirectMedia Layer (SDL 2004) might be one route towards this. Compatibility
with the Mono .NET runtime would also need to be tested – at the time of writing,
certain necessary portions of the System.Windows.Forms library have not been
ported to it, and from our own testing with MNGPad we would agree that it “is
not ready for use in a production system at this time” (Calvert 2004).

However, the parser generator is compatible with Mono, and we were successful
in both loading and saving a MNG file and extracting a music script from it using
a test program compiled in Linux against the MNGFilter/MNGTree/MNGParser
libraries, which had been compiled in Windows. We are confident that more
comprehensive support for Forms-based programs will develop within the next
two years.

A Scripted Sample-Based Music System for Game Environments using .NET

 42

Chapter 9 - Bibliography

(Ananian et. al. 1999) Ananian, C. S., Flannery, F. and Hudson, S. CUP Parser
Generator for Java – project web site:
http://www.cs.princeton.edu/~appel/modern/java/CUP/

(Brooks 1995) Brooks, F. P., “The Mythical Man Month, Anniversary Edition
(2nd ed.)”, Addison-Wesley, 1995

(Bracha et. al. 2001) Bracha, G., Cohen, N., Kemper, C., Marx, S., Odersky, M.,
Panitz, S., Stoutamire, D., Thorup, K., Wadler, P., “JSR-00014: Adding Generics
to the Java Programming Language”, April 2001 [online source as of May 2004:
http://jcp.org/aboutJava/communityprocess/review/jsr014/index.html]

(Brown 2004) Brown, K., “Beware of Fully-Trusted Code”, Security Briefs,
MSDN Magazine, April 2004 [online source as of May 2004:
http://msdn.microsoft.com/msdnmag/issues/04/04/SecurityBriefs/default.aspx]

(Burns 1997) Burns, K., “History of electronic and computer music including
automatic instruments and composition machines,” Florida International
University [online source as of May 2004:
http://eamusic.dartmouth.edu/~wowem/electronmedia/music/eamhistory.html]

(Calvert 2004) Calvert, C., “WinForms: How to Use Mono to Get Microsoft
.NET GUI Based Applications Running on Linux”, Borland Developer Network
[online source as of May 2004:
http://community.borland.com/article/0,1410,32073,00.html]

(Chowning 1973) Chowning, J., “The synthesis of complex audio spectra by
means of frequency modulation", Journal of the Audio Engineering Society, vol.
21, pp. 526-534, 1973

(Crowe 2004) Crowe, M. K., “Compiler Tools in C#”, May 2004 [online source
as of May 2004: http://cis.paisley.ac.uk/crow-ci0/index.htm#Research]

(Csound 1999) Boulanger, R. ed., “The Csound Book – Perspectives in Software
Synthesis, Sound Design, Signal Processing and Programming”, MIT Press,
October 1999 [related website: http://www.csounds.com/]

(Clark 2001) Clark, A., “Adaptive Music”, Gamasutra Audio Resource Guide,
May 2001 [online source as of May 2004:
http://www.gamasutra.com/resource_guide/20010515/clark_01.htm]

(Culver 2001) Culver, A., “John Cage Computer Programs”, 2001 [online source
as of May 2004:
http://www.anarchicharmony.org/People/Culver/CagePrograms.html]

A Scripted Sample-Based Music System for Game Environments using .NET

 43

(Cyberlife 2000) CyberLife Technology, “The Music Behind Creatures”, 2000
[online source as of May 2004:
http://web.archive.org/web/20020614201723/http://www.creatures.co.uk/library/s
cience/lib_science_musicbehind1.htm]

(Cyberlife 2004) CyberLife Technology, “Creatures 2 CAOS Language Guide”,
pp17-18, February 2004 [online source as of May 2004:
http://www.gamewaredevelopment.co.uk/downloads/COBcompiler/C2CAOS.doc
]

(Delahunt 2003) Delahunt, M., “ArtLex on Aleatory”, ArtLex Art Dictionary,
2003 [online source as of May 2004:
http://www.artlex.com/ArtLex/a/aleatory.html]

(DotGnu 2003) DotGNU, DotGNU Portable.NET project website –
http://dotgnu.org/pnet.html

(Gameware 2004) The Creatures Development Network website –
http://www.gamewaredevelopment.co.uk/cdn/

(Gamma et. al. 1995) Gamma, E., Helm, R., Johnson, R. and Vlissides, J.,
"Design Patterns: Elements of Reusable Object-Oriented Software," Addison-
Wesley, 1995

(GNU 2003a) The flex Home Page, Free Software Foundation –
http://www.gnu.org/software/flex/

(GNU 2003b) The bison Home Page, Free Software Foundation –
http://www.gnu.org/software/bison/

(GotDotNet 2004) The VBCommenter Powertoy Development Home Page -
http://www.gotdotnet.com/Community/Workspaces/workspace.aspx?id=112b544
9-f702-46e2-87fa-86bdf39a17dd

(Grand 1997) Grand, S., Cliff, D., Malhotra A., "Creatures: Artificial Life
Autonomous Software Agents for Home Entertainment", Proceedings of the First
International Conference on Autonomous Agents, ACM Press, New York, 1997,
pp. 22-29 [online source as of May 2004:
http://www.cyberlife-research.com/articles/grandcliffmalhotra/agents97.html]

(Hays 1998) Hays, T., “DirectMusic For The Masses”, Gamasutra Audio
Resource Guide, November 1998 [online source as of May 2004:
http://www.gamasutra.com/features/19981106/hays_01.htm]

(IDA 2004) IDA Pro Disassembler website – http://www.datarescue.com/idabase/

(Johnson 1975) Johnson, S. C., “Yacc – yet another compiler compiler”,
Computing Science Technical Report 32, AT&T Bell Laboratories, Murray Hill,
N. J., 1975

A Scripted Sample-Based Music System for Game Environments using .NET

 44

(Kennedy and Syme 2001) Kennedy, A. and Syme, D., “Design and
Implementation of Generics for the .NET Common Language Runtime”,
Microsoft Research, May 2001 [online source as of May 2004:
http://research.microsoft.com/projects/clrgen/generics.pdf]

(Klein 2003) Klein, G., “JFlex – The Fast Scanner Generator for Java”, [online
source: http://www.jflex.de/]

(Land and McConnell 1991) Land, M. Z. and McConnell, P. N., “Method and
apparatus for dynamically composing music and sound effects using a computer
entertainment system”, November 1991, U.S. Pat. 5,315,057

(Lesk 1975) Lesk, M. E., “Lex – a lexical analyzer generator”, Computing
Science Technical Report 39, AT&T Bell Laboratories, Murray Hill, N.J, 1975

(Mathews 1969) Mathews, M. V., “The Technology of Computer Music”, MIT
Press, 1969

(Maurer 1999) Maurer, J. A., “A Brief History of Algorithmic Composition”,
1999 [online source as of May 2004:
http://ccrma-www.stanford.edu/~blackrse/algorithm.html]

(McKinney 1997) McKinney, B., “Hardcore Visual Basic (2nd ed.)”, pp109-113,
Microsoft Press, 1997 [online source as of May 2004:
http://www.mvps.org/vb/hardcore/]

(IBM and Microsoft 1991) IBM Corporation and Microsoft Corporation,
“Multimedia Programming Interface and Data Specifications 1.0”, August 1991
[online source as of May 2004:
http://www.tsp.ece.mcgill.ca/MMSP/Documents/AudioFormats/WAVE/Docs/riff
mci.pdf]

(Microsoft 2002) Microsoft Corporation, “The Microsoft Shared Source CLI
Implementation“, March 2002 [online source as of May 2004:
http://msdn.microsoft.com/library/en-us/Dndotnet/html/mssharsourcecli.asp]

(Microsoft 2003a) Microsoft Corporation, “Overview of the .NET Framework”
in .NET Framework Developer’s Guide [online source:
http://msdn.microsoft.com/library/en-
us/cpguide/html/cpovrIntroductionToNETFrameworkSDK.asp]

(Microsoft 2003b) Microsoft Corporation, “Microsoft DirectX Audio Overview”
[online source: http://msdn.microsoft.com/library/en-us/dnaudio/html/daov.asp]

(MIDI 2003) MIDI Manufacturers Association website – http://www.midi.org/

(MNGEdit 2004) “MNGEdit – a music editor for Creatures”, project website -
https://sourceforge.net/projects/mngedit/

A Scripted Sample-Based Music System for Game Environments using .NET

 45

(Morton 1990) Morton, J., “Atari Advertises the STacey, Commodore Fights for
MIDI Acceptance” in BetaZine #8, The PsychoTronic Authority, April 1990
[online source as of May 2004: http://www.atariarchives.org/cfn/12/03/0041.php,
picture of advert: http://www.atari-explorer.com/images/ST-midi-Ad1-Small1.gif]

(Mono 2003) Ximian, Mono project website – http://www.go-mono.com/

(NDoc 2004) NDoc project website – http://ndoc.sourceforge.net/

(SDL 2004) Simple DirectMedia Layer website – http://www.libsdl.org/

(Smith 1999) Smith, S. W., “The Scientist and Engineer’s Guide to Digital Signal
Processing”, pp261-350, California Technical Publishing, 1999 [online source as
of May 2004: http://www.dspguide.com/pdfbook.htm]

(SourceForge 2003) SourceForge website – http://sourceforge.net/

(Sun 2004a) The Java Sound API website –
http://java.sun.com/products/java-media/sound/

(Sun 2004b) The Javadoc Tool website – http://java.sun.com/j2se/javadoc/

(Thompson 2003) Thompson, T., “The PLUM list – Programming Languages
Used for Music”, website - http://www.nosuch.com/tjt/plum.html

(Whitmore 2003) Whitmore, G., “Designing With Music In Mind: A Guide to
Adaptive Audio for Game Designers”, Gamasutra Audio Resource Guide, May
2003 [online source as of November 2003:
http://www.gamasutra.com/resource_guide/20030528/whitmore_01.shtml]

(Wikipedia 2004) ”One-time pad”, Wikepedia, Februrary 2004 [online source:
http://en.wikipedia.org/wiki/One-time_pad]

(Yackley 1999) David Yackley, “Microsoft DirectMusic: Creating New Musical
Possibilities”, Microsoft Corporation, November 1999 [online source:
http://msdn.microsoft.com/library/en-us/dnmusic/html/dm_nmp.asp]

(Zend 2003) Zend Accelerator product website –
http://www.zend.com/store/products/zend-accelerator.php

A Scripted Sample-Based Music System for Game Environments using .NET

 46

Appendix A - MNG File and Scripting Formats

This appendix is intended as a reference to assist programmers in writing their
own MNG-based programs in any language, not necessarily using the tools
developed by us. It is divided into two parts:

1. A description of the layout of MNG files on disk, and
2. The syntax and semantics of the script included in the MNG file

Unless otherwise specified, all lengths are in bytes, positions are 0-based from the
start of the file, and numerical values are little-endian. This information was
obtained via reverse-engineering techniques and so is not authoritative.

A.1 MNG File Format

Table A-1: MNG File Disk Layout

 Position Length Description Notes
 0 4 Number of samples
 4 4 Position of script Zero-based byte position
 8 4 Length of script Length in bytes
 12 4 Position of first sample Zero-based byte position
 16 4 Length of first sample Length in bytes
 20 4 Position of second sample Zero-based byte position
 … … …
 N * 8 + 8 4 N is the number of samples
 N * 8 + 12 Variable First sample Followed by the rest of the

samples

The samples themselves are in the WAV file format, except that the RIFF header
is missing and the “fmt_” chunk is missing its identifier (that is, the first data
present are the “length of format chunk”, which typically starts at the 16th byte of
a WAV file). Implementers should be aware that the file format does not appear to
support any RIFF chunks other than the format and data chunks – when importing
WAV files, additional chunks should be stripped out. The standard format of
WAV files used in MNG files is 22050 Hz mono 16-bit audio – other formats are
not guaranteed to work correctly.

The names of the samples as referenced by the script are not stored with the
samples – they are implicitly defined by the position of the sample in the MNG
file. The first sample to be named in the script with a Wave() definition will be the
first sample in the MNG file; the second will be the second, and so on. Repeated
samples are reused.

The script is ASCII text, but it is encrypted with an XOR function. This function
works on a byte level, with a starting operand value of 0x5 and an increment of
0xC1. The following sample function will encode or decode an array of bytes into
this format:

A Scripted Sample-Based Music System for Game Environments using .NET

 47

Private Function Scramble(ByVal data As Byte()) As Byte()

Dim hb as Byte, count as Integer
hb = 5
For count = 0 to data.Length – 1

data(count) = data(count) Xor hb
If hb < &H3F Then

hb = CByte(hb + &HC1)
Else

hb = Cbyte(hb + (&HC1 - &H100))
End If

Next count
Return data

End Function

A Scripted Sample-Based Music System for Game Environments using .NET

 48

A.2 MNG Scripting Format

MNG script files are defined by the following lexical analysis script and context-
free grammar (see Chapter 3 of the main text and the MNGPad user guide for
semantics):

A.2.1 Lexical Grammar

Table B-1: Script Lexical Grammar

[\n\r] ;
Variable %T_Variable
Effect %T_Effect
Track %T_Track
Stage %T_Stage
Pan %T_Pan
Volume %T_Volume
Delay %T_Delay
TempoDelay %T_TempoDelay
Random %T_Random
FadeIn %T_FadeIn
FadeOut %T_FadeOut
BeatLength %T_BeatLength
AleotoricLayer %T_AleotoricLayer
LoopLayer %T_LoopLayer
Update %T_Update
Add %T_Add
Subtract %T_Subtract
Multiply %T_Multiply
Divide %T_Divide
SineWave %T_SineWave
CosineWave %T_CosineWave
Voice %T_Voice
Interval %T_Interval
Condition %T_Condition
BeatSynch %T_BeatSynch
UpdateRate %T_UpdateRate
Wave %T_Wave
[A-Za-z]([A-Za-z0-9])* %name
-?[0-9]+\.[0-9]+ %number
-?[0-9]+ %number
[(){},=] %TOKEN
\/\/.* %comment

A.2.2 Parser Grammar

goal: statementlist ;

statementlist: statement
| statementlist statement
;

statement: effectdec
| trackdec
| variabledec
| comment
;

variabledec: T_Variable '(' name ',' expression ')' ;

A Scripted Sample-Based Music System for Game Environments using .NET

 49

effectdec: T_Effect '(' name ')' '{' stagelist '}' ;

trackdec: T_Track '(' name ')' '{' track '}' ;

stagelist: stage
| stagelist stage
;

stage: T_Stage '{' stagesettinglist '}'
| comment
;

stagesettinglist: stagesetting
| stagesetting stagesettinglist
;

stagesetting: pan
| effectvolume
| delay
| tempodelay
| comment
;

pan: T_Pan '(' expression ')' ;

layervolume: T_Volume '(' expression ')' ;

effectvolume: T_Volume '(' expression ')' ;

delay: T_Delay '(' expression ')' ;

tempodelay: T_TempoDelay '(' expression ')' ;

random: T_Random '(' expression ',' expression ')' ;

track: tracksetting
| track tracksetting
;

tracksetting: aleotoriclayerdec
| looplayerdec
| fadein
| fadeout
| beatlength
| volume
| comment
;

fadein: T_FadeIn '(' expression ')' ;

fadeout: T_FadeOut '(' expression ')' ;

beatlength: T_BeatLength '(' expression ')' ;

aleotoriclayerdec: T_AleotoricLayer '(' name ')' '{'
aleotoriclayer '}' ;

A Scripted Sample-Based Music System for Game Environments using .NET

 50

looplayerdec: T_LoopLayer '(' name ')' '{' layer '}' ;

aleotoriclayer: aleotoriclayercommand
| alotoriclayer aleotoriclayercommand
;

looplayer: looplayercommand
| looplayer looplayercommand
;

aleotoriclayercommand: effect
| comment
| layervolume
| variabledec
| updateblock
| voiceblock
| beatsynch
| updaterate
| interval
;

looplayercommand: comment
| layervolume
| variabledec
| updateblock
| beatsynch
| updaterate
| wave
| interval
;

effect: T_Effect '(' name ')' ;

updateblock: T_Update '{' assignmentlist '}' ;

assignmentlist: assignment
| assignment assignmentlist
;

assignment: variable '=' expression
| comment
;

variable: name
| T_Interval
| T_Volume
| T_Pan
;

expression: add
| subtract
| multiply
| divide
| sinewave
| cosinewave
| random
| variable
| number
;

A Scripted Sample-Based Music System for Game Environments using .NET

 51

add: T_Add '(' expression ',' expression ')' ;

subtract: T_Subtract '(' expression ',' expression ')' ;

multiply: T_Multiply '(' expression ',' expression ')' ;

divide: T_Divide '(' expression ',' expression ')' ;

sinewave: T_SineWave '(' expression ',' expression ')' ;

cosinewave: T_CosineWave '(' expression ',' expression ')' ;

voiceblock: T_Voice '{' voicecommands '}' ;

voicecommands: voicecommand
| voicecommands voicecommand
;

voicecommand: wave
| interval
| effect
| condition
| updateblock
;

interval: T_Interval '(' expression ')' ;

condition: T_Condition '(' variable ',' number ',' number ')' ;

beatsynch: T_BeatSynch '(' expression ')' ;

updaterate: T_UpdateRate '(' expression ')' ;

wave: T_Wave '(' name ') ;

A Scripted Sample-Based Music System for Game Environments using .NET

 52

Appendix B - MNGPad/MNGPlayer User Guide

[Note: This guide is aimed at end-users not academics, and is written accordingly]

B.1 Introduction

Welcome to MNGTools! First of all, if all you want to do is to listen to your
Creatures music, then read no further – all you have to do is start up MNGPlayer,
open the music file of your choice, select the track you want to listen to, and click
play. These files are in the Sounds subdirectory for each game, with names ending
with .MNG

If you want to learn more about how the music in Creatures works, or maybe
make or edit music files for your Creatures games, read on . . .

B.2 How A MNG Music File Works

You may be familiar with music in the form of one long stream of sound, as in a
WAV or MP3 file. However, music in the Creatures games works a little
differently. It is made up small samples of music, usually just a few seconds long.

These samples are put together in various ways, as indicated by a script. This
script is little like a piece of sheet music - it tells the game what samples to play as
part of the music, and when and how it should play them. However, it is also a
little like a programming language – it has loops, and variables, and operations
such as addition and multiplication.

Don’t worry if this all sounds terribly complicated – it’s really not that hard to get
to grips with, especially after you’ve seen a few examples!

B.3 Using Samples

As you have learnt, music in Creatures is made up of snippets of sound called
samples. These samples are typically a few notes from a musical instrument, but
they may be any sound you can devise, as long as you can get it into a WAV file.

The samples should be in 22 kHz (22100 Hz) mono 16-bit format. Your sound
program should be able to save in this format; if it cannot, you can convert
existing files by opening them in Sound Recorder and selecting this format in the
Options dialog of File/Save As…

In MNGPad you may add, rename, export, replace or delete samples from music
files from the menu that appears when right-clicking on them in the sample list.
You can also drag and drop files from Windows Explorer into the sample list, or
right-click and drag samples out into a folder. If importing files, MNGPad will
use the name of the WAV file, but you are free to rename the sample later on.

One warning – the music file can only store the names of samples that you use, so
you must use all samples by referring to them as a Wave (see below). If you do

A Scripted Sample-Based Music System for Game Environments using .NET

 53

not, MNGPad may warn you on exiting that the names of unused samples may be
lost (or just not let you exit without removing them or altering the script).

B.4 Making Scripts

B.4.1 Tracks, Layers, Voices and Updates

When you specify music in Creatures or Docking Station, you specify a Track.
These tracks are filled with Layers. Each layer can be thought of as a player in an
orchestra, while the Track would be the orchestra itself. As you might expect,
layers play simultaneously, but you only play one track at a time.

There are two types of layer, the LoopLayer and the AleotoricLayer. LoopLayers
are useful if you only wish to play one sample, but you wish to play it all the time,
maybe moving it from side to side on the speakers or fading it in and out.
AleotoricLayers are more flexible, and can be used to play a sequence of Voices,
each of which has a different sample.

Both layers have the concept of an Update block. Updates happen at a set rate (the
UpdateRate) for LoopLayers, or each time you go through an AleotoricLayer.
When updating, a series of assignments to variables – boxes inside the computer
that contain a number – are made. These variables can be separate variables
declared in the layer – like this: Variable(temp, 0.0) – or they can be preset things
like Volume or Pan – the two most important ones. Volume ranges from 0.0 to
1.0, and Pan from -1.0 (full left) to 1.0 (full right).

The game also supplies two variables which you can read from, Mood and Threat.
Mood is how well the creatures are, and Threat is how dangerous the situation is –
if a grendel is on the prowl, you can bet that Threat will rise! You can see several
examples of how variables are used in the music scripts included with Creatures,
and test out changing Mood and Threat with MNGPlayer.

An Interval can be set for a layer. This is how long it will pause between voices
(or between playing the same wave, for LoopLayers). You can also specify an
interval in a voice, which will be used if that voice is played. Often intervals are
timed so that a new sample starts just before or just after the previous one
(although effects can be used for this as well). You can also set an update block
for a voice, to be executed when that voice has played.

A voice may specify one or more Conditions which must be passed for it to play.
For example it may only play if the Mood is between 0.5 and 1.0, or if a counter
variable declared by the script is at a certain level. Conditions also affect whether
or not update blocks and intervals contained within a voice take effect.

B.4.2 Using Effects

We’ve covered a lot, and if you’ve been following along in MNGPad you should
be able to hear things taking shape, but perhaps it doesn’t sound quite like the in-
game music – a lot of the tracks have an “echoing” sound, or one that bounces
from one speaker to another – somewhat like a LoopLayer. You may also be

A Scripted Sample-Based Music System for Game Environments using .NET

 54

interested by all the text at the top of the Creatures script files. These declarations
are called Effects, and they control the output of each AleotoricLayer.

What do we mean by output? Well, you can think of it like the following diagram:

We start off with three samples. These samples are mixed together when we play
each of them in a layer. However, the Creatures sound engine then takes that mix
and plays it several times, once for each stage in the selected effect (or just once,
if you haven’t set an effect). In this case, there were three stages, so it played the
entire mix three times.

The trick is that the engine doesn’t play them all at once – each stage has a delay
associated with it, the delay between that stage playing and the next one. They
also have Pan and Volume settings, so you can make the sound slowly fade out or
sweep from left to right, just like the Creatures music does. Try it out for yourself
by applying an effect; all you have to do is add Effect (effectname) into the layer.
Effects are usually defined at the top of the file, and are shared among all layers.

B.5 Hopefully Helpful Hints

Of course, this is all very theoretical - the best way to learn is to try stuff out!
Using MNGPlayer you can quickly get an idea of how your music is going to
sound – just save it in MNGPad and reload in MNGPlayer to listen to the changes.
Note that you can drag and drop MNG files onto both MNGPad and MNGPlayer.

First of all, the music in Creatures is meant to be played all the time. This means
that your music should be designed to run cyclically. At the same time, it may
only play for a few seconds as the user moves on to another part of the world, and
so it should probably not take too long to get going, unless you expect players to
spend a long time in the same place. Bear this in mind while making your music.
The game scripts are often good examples – listen to them and then read the script
to see how they did it.

Talking of other scripts, it is often a good idea to start with an existing script so
that you have the correct structure – just remember not to include anyone else’s
script (or samples) without their permission in music you distribute to others,
since in almost all places it’s against the law. Regarding music originally from the
Creatures games, Gameware’s view appears to be that it is OK to use their work

A Scripted Sample-Based Music System for Game Environments using .NET

 55

as long as you are not using it commercially – if you want to sell stuff including
music, make your own! Like any copyright holder, they have the right to say no in
specific cases if they wish to.

Finally, remember, computers are stupid – if you get a) in the wrong place, or
miss out a {, it won’t work! The tick button on the MNGPad toolbar will check
that you’ve got them all in the right places, although it can’t check everything –
make sure to test your music first in MNGPlayer. And finally, the case of letters
matters – SampleA is a different sample to samplea. Don’t use both unless you
want to get horribly confused.

B.6 Conclusion

That’s it. Happy editing! If you have any suggestions, comments, or bug reports,
send me an email at greenreaper at hotmail dot com. If you’ve done a really cool
piece of music, I’d love to hear it, but send it to greenreaper at stardock dot com.

A Scripted Sample-Based Music System for Game Environments using .NET

 56

Appendix C - User Questionnaire

The following questionnaire was sent to users to quantify their experience of the
prototype MNG editor, and to elicit suggestions from them:

Thank you for taking the time to try out this software. Please answer the following
questions as best you can. Your answers will help us to modify the programs so
that they are a better fit to your needs.

Why are you interested in this software? What do you imagine/intend using it for?

Having used it for a few minutes, what was your first reaction to the software?

What do you not like about how the current features work?

What features do you feel are missing?

If a future editor was made that did not require you to edit the script directly,
what features would you consider to be most useful to you, and how would you
imagine them working? Please give as much detail as you can.

Is there any other way in which the software itself, installation or documentation
could be improved for you?

Do you have any other comments?

A Scripted Sample-Based Music System for Game Environments using .NET

 57

Appendix D - Scramble Function

This appendix documents the MNG scramble function as originally disassembled
from the Docking Station game executable, engine.exe:

.text:00543400 sub_0_543400 proc near
.text:00543400
.text:00543400 arg_0 = dword ptr 8
.text:00543400 arg_4 = dword ptr 0Ch
.text:00543400
.text:00543400 push ebp
.text:00543401 mov ebp, esp
.text:00543403 push esi
.text:00543404 mov esi, [ebp+arg_4]
.text:00543407 xor eax, eax
.text:00543409 mov cl, 5
.text:0054340B test esi, esi
.text:0054340D jle short loc_0_543424
.text:0054340F mov edx, [ebp+arg_0]
.text:00543412 push ebx
.text:00543413
.text:00543413 loc_0_543413: ; CODE XREF: sub_0_543400+21
.text:00543413 mov bl, [eax+edx]
.text:00543416 xor bl, cl
.text:00543418 add cl, 0C1h
.text:0054341B mov [eax+edx], bl
.text:0054341E inc eax
.text:0054341F cmp eax, esi
.text:00543421 jl short loc_0_543413
.text:00543423 pop ebx
.text:00543424
.text:00543424 loc_0_543424: ; CODE XREF: sub_0_543400+D
.text:00543424 pop esi
.text:00543425 pop ebp
.text:00543426 retn
.text:00543426 sub_0_543400 endp

The first section of code up to 00543412 is clearly initialization code, using esi for
storing the the position of the end of the data and ebp for the stack pointer
(previous values are saved on the stack), setting the initial value (5) of the byte
counter cl and checking that the length of the data is not zero – if it is, it jumps to
the final section. Lastly, edx is set to the position of the data in memory.

The second section is where the XOR operation takes place. Each byte from the
data is moved into bl and XORed in turn with the counter cl, which is
subsequently incremented by 0xC1. The XORed byte is then moved back to
overwrite the data. A test is made to check if there is more data to process, and if
so this section is repeated with the next byte.

The final section restores the saved registers and returns from the function.

A Scripted Sample-Based Music System for Game Environments using .NET

 58

Appendix E - Build Tools

This project could not have been built without the following tools, and so an
overview of their operation is given in this appendix.

E.1 C# Complier Tools – Lexer and Parser Generator

The C# compiler tools (Crowe 2004) come in three main parts – the lexer
generator (lg.exe), the parser generator (pg.exe) and the tools library (Tools.dll),
which is used by both the generators as well as client applications. There is a
reduced-size runtime version of the library which contains only the code
necessary to run the generated lexers and parsers – this version is distributed as a
part of the MNGTools setup file.

The lexer and parser generators generate code in C# by reading in lexer and parser
definition files and converting them into a set of rules. The syntax of the input
files is equivalent to that required by the lex and yacc tools, with some extensions
to provide for a better fit with the object-oriented approach of .NET.

More information on the operation and internals of the compiler tools is available
on the accompanying CD, or from (Crowe 2004).

E.2 NDoc – XML-based Documentation Generator

The development environment produces XML files containing structured
comments from the comments in the source files, with assistance from
VBCommenter (GotDotNet 2004) in the case of VB.NET. NDoc (2004) takes
these XML files and produces easily-navigable Complied HTML help files. The
rules for doing so are themselves defined by XML files.

XML comments are straightforward to write, although it is important to remember
to terminate all XML elements correctly.

A Scripted Sample-Based Music System for Game Environments using .NET

 59

Appendix F - Code Samples

Considering the volume of code required for this project, much of which is not of
academic interest, some files have been excluded. All source code is on the
accompanying CD and available at the project website. (MNGEdit 2004)

Table F-1: Included code samples

Component Name Description

MNGPad MNGPad.vb MNG file editor

MNGPlayer MNGPlayer.vb MNG music player

MNGTree ConditionNode.vb AST node representing a condition

MNGParser MNGParser.cs MNG script parser (to AST)

 MNG.lexer Input file to lexer generator

 MNG.parser Input file to parser generator

MNGFilter MNGFile.vb MNG file container & I/O component

 Sample.vb Internal sample representation

 SampleHashtable.vb Hashtable subclass for samples

 ScriptWriter.vb Visitor subclass used to write out the
AST to a text script

 SampleScanner.vb Visitor subclass generating a list of
Waves from the AST (for saving)

MNGEngine MNGEngine.vb MNG music playing component

 SoundManager.vb Sound buffer handler

 VoicePlayer.vb Manages instances of sample playback

 ExpressionEvaluator.vb Script expression node evaluator

 LayerReader.vb Reads layer details from the AST

 LayerPlayer.vb Controls layer and effect playback

 AleotoricLayerPlayer.vb Plays voices in Aleotoric layers

Note: Comments prefaced by three apostrophes are intended for use by the XML
documenter – those prefaced by just one apostrophe are standard comments.

