
FIDO Alliance's
Universal 2nd Factor (U2F)
Integration with
Magento 2

StrongAuth, Inc.
10846 Via San Marino
Cupertino CA 95014-6333
USA

Revision 1.1 – January 2018

Copyrights & Notices

Copyright 2001-2018 StrongAuth, Inc. 10846 Via San Marino, Cupertino CA 95014 U.S.A. All
rights reserved.

StrongAuth, Inc. has intellectual property rights relating to technology embodied in the product
that is described in this document. In particular, and without limitation, these intellectual property
rights may include one or more U.S. patents or pending patent applications in the U.S. and in
other countries.

U.S. Government Rights – Commercial software. Government users are subject to the StrongAuth,
Inc. standard license agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

StrongAuth, StrongKey, StrongKey Lite, StrongKey CryptoCabinet, StrongKey CryptoEngine, the
StrongAuth logo, the StrongKey logo, the StrongKey Lite logo, the StrongKey CryptoCabinet logo
and the StrongKey CryptoEngine logo are trademarks or registered trademarks of StrongAuth, Inc.
or its subsidiaries in the U.S. and other countries.

Products covered by and information contained in this publication are controlled by U.S. Export
Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical or biological weapons or nuclear maritime end uses or end users, whether direct or
indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to
entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons
and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE
EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Contents

Overview... 2

Mechanics... 2

FIDO Registration... 4

Background on the Checkout process..8

FIDO Authentication..9

Explanation of Files in the StrongAuth Magento PoC..11

Troubleshooting Problems..13

1

Overview

This document is to assist software developers in modifying the Magento 2 e-commerce
platform to support the “Fast IDentity Online” (FIDO) “Universal 2nd Factor” (U2F) protocol to
enable strong-authentication.

Why?

It is patently obvious that systems using passwords (a half-century old technology) to
authenticate users are almost certain to be compromised. Public web-applications are at
high risk since they are visible on the open internet and make easy targets for attack. Web-
applications that perform e-commerce transactions with credit-cards are at extremely high
risk of a compromise due to the profit potential for attackers. When you add these three
elements together: public web-sites + passwords + e-commerce, you have a combination
almost certain to lead to a vulnerability.

FIDO protocols are designed to prevent compromise of systems by requiring strong-
authentication using a challenge-response-based protocol with strong cryptographic keys
and algorithms. Some additional capabilities have been added to protect them from “man-
in-the-middle” and phishing attacks.

Most FIDO Authenticators (aka Tokens and/or Security Keys) are hardware-based devices on
which cryptographic keys are generated and used; this not only protects cryptographic keys
from being compromised (since they are not stored in a password-protected file on the
hard-disk), but make it harder for attackers to steal such devices from the user.

 Additionally, FIDO protocols mandate a “test of human presence” - a requirement to
confirm that a real human is at the other end of the transaction. If the mandate is forced
with a hardware based token, it ensures that the website is not being attacked by a remote
user using software.

The National Institute of Standards and Technology (NIST)'s National Cybersecurity Center
of Excellence (NCCoE) manages a program to define an architecture for mitigating e-
commerce fraud risk by introducing multi-factor authentication based on the FIDO U2F
protocol if the transaction is deemed risky based on an analysis of the transaction.

Magento 2 (Magento), one of the world's most popular e-commerce platforms, was chosen
for a proof-of-concept (PoC) demonstration of this architecture. StrongAuth, Inc., a Technical
Collaborator on the project made code-modifications to the Magento platform to
demonstrate this architecture.

Mechanics

Magento allows third-parties to add value to their platform by extending its code through
modules. This document describes the creation of such a module – called the
FIDOU2FAuthenticator module - to override Magento's default checkout process, to require
FIDO-based strong-authentication on purchases that exceed a total of $25 (to simulate a
“risky” transaction). Real-world extensions may likely choose other criteria to mitigate risk
– the $25 limit was chosen for this proof-of-concept.

While there is also a multi-shipping workflow in Magento, StrongAuth chose to modify only
the default checkout process flow. If your Magento environment uses the multi-shipping
workflow instead of the default, please make appropriate changes within that workflow to
incorporate FIDO.

2

 Magento FIDO Authentication

Additionally, since the purpose of FIDO authentication is to verify the identity of a customer,
guest checkout must be disabled.

Finally, the registration workflow should not be considered a secure registration process.
The reason for this is because the NCCoE project chose to introduce strong-authentication
only when a transaction is deemed risky. If an attacker compromised a legitimate user's
password, they could register a new FIDO Security Key under that account. Once
registered, they could use their newly registered key to authorize any checkout that
requires FIDO-based strong-authentication.

In order to mitigate this vulnerability, a site that chooses to use FIDO strong-authentication
within their Magento instance, should configure it to always require FIDO strong-
authentication for any login attempt into the account once a FIDO Security Key is
registered. This prevents an attacker from registering a spurious FIDO key into the account
and getting past the “risky transaction” checkout process.

FIDO Registration

FIDO strong-authentication requires that users register one or more FIDO Security Keys
under their account. This is accomplished through the FIDOU2FAuthenticator module
created by StrongAuth for this PoC.

There are three parts to the process. While they all execute in sequence without the user
being aware of each part, it is helpful to explain each part so developers understand the
workflow.

Display Function
In this part of the process, a Magento layout file - customer_account_index.xml - loads code
from fido_register.phtml on the server-side to perform the following two functions:

1. To generate HTML that displays FIDO Registration user-interface components in the
browser, along with summary information of the number of Security Keys a user
may have registered. The summary information on registered keys is shown above
the “Recent [Magento] Orders” section which normally appears at the top of the
user-dashboard; and

2. To execute the FIDO Registration process to register a new FIDO Security Key using
JavaScript embedded in the fido_register.phtml file.

If a user has not registered a FIDO Security Key within Magento yet, the HTML displays a
zero ('0') value for the number of registered keys, and a Button to register a new Security
Key (as shown below) with images of sample Security Keys from different manufacturers:

4

If a user has registered one or more Security Keys to their account - which the FIDO U2F
protocol allows - the FIDOU2FAuthenticator module displays the number of Security Keys
registered by the user; else, it displays 0. The HTML display for such a user's registered
keys resembles the following:

In order to determine the number of FIDO Security Keys registered by a user within their

5

Figure 1: Browser display without any Security Keys registered

Browser displaying User Dashboard

Figure 2: Browser display with two Security Keys registered

Browser displaying User Dashboard

account, the server code in fido_register.phtml calls the “block” file, Register.php. This PHP
file, in turn, invokes FidoService.php to call a webservice (also sometimes known as
“consume a webservice” in some literature) on a previously configured FIDO U2F server
(implemented in StrongAuth's CryptoEngine module) known to the Magento instance. The
webservice request retrieves Security Key-related information for the specific user from the
FIDO Server.

FidoService.php parses the retrieved number of registered keys and returns the value to
Register.php, which in turn returns the number to fido_register.phtml that generates HTML
for the browser to display.

NOTE: In the PoC implementation, Register.php is executed only when the user navigates to their
user-dashboard page. If a new Security Key is registered while on that page, the page is
automatically refreshed upon completion of the transaction to display the correct number of
registered Security Keys.

An overview diagram of the first part of the registration process – that displays the current
number of registered Security Keys, if any - is displayed below:

PreRegister Function
The second part of the FIDO Registration process acquires a challenge from the FIDO U2F
Server (CryptoEngine) for processing within the user's FIDO Security Key.

When the “Register FIDO Security Key” button on the browser is pressed by the user,
JavaScript that was loaded earlier in the web-page (by fido_register.phtml) makes an
Asynchronous JavaScript over XML (AJAX) call to Preregistration.php on the Magento Server,
which in turn, invokes FidoService.php to call the preregister webservice operation on the
CryptoEngine. CryptoEngine returns a nonce (a “number used once” - a piece of random
information used as a challenge to the Security Key) along with a list of previously-
registered FIDO Security Keys, if any. If this is the first Security Key being registered, this
list is empty.

6

Figure 3: Display Function part of the FIDO Registration process

Key Appliance 3.0

TPM or HSM

KeyAppliance

CryptoEngine

CryptoCabinet

PKI2FIDO

FIDO Sign-On

SEDOS

LDAP Directory

SAFT

FidoService.php

Register.php

fido_register.phtml

Magento Server

Browser displaying User Dashboard

(FIDO U2F Server)

NOTE: In the FIDO U2F protocol, currently registered Security Keys, if any, are returned by the
FIDO server to ensure that Security Keys do not attempt to generate a duplicate key for users on
the same device. This implies that manufacturers of such FIDO Security Keys must implement
logic to ensure they check for an existing key-pair for a user for the specific website. A FIDO
Certified® Authenticator will always have this logic implemented since it is part of the protocol-
conformance testing to achieve the FIDO Certified® label.

Upon receiving the challenge, the browser and the Security Key interact with each other
using the u2f-api.js library to perform FIDO U2F-specified protocol functions. If the Security
Key does not already have a cryptographic key-pair for this specific web-site domain, it
requires the user to perform an action to prove their presence in front of the computer, and
upon the user doing so, generates a new Elliptic Curve Digital Signature Algorithm (ECDSA)
key-pair.

The “user action” may be something chosen by the manufacturer of the Security Key, such
as:

• Touching a metallic component or pressing a button that has a blinking light-
emitting diode (LED);

• Removing and re-inserting a Universal Serial Bus (USB)-based Security Key;

• Bringing a Near Field Communications (NFC)-based Security Key near the NFC-
enabled computer/mobile device;

• Scanning their finger or iris on a mobile device enabled with biometric capabilities;

• Etc.

FIDO protocols do not mandate any specific user-action for the “test of human presence” -
manufacturers are at liberty to choose whatever complies with the protocol.

Register Function
The third and last part of the FIDO Registration process generates a new key-pair for the
user for the specific web-site domain on the user's FIDO Security Key, digitally signs the
challenge from the FIDO U2F Server (CryptoEngine) and submits a package of the response
to the CryptoEngine for processing.

When the user has “activated” their FIDO Security Key using whatever mechanism the

7

Figure 4: Preregistration part of the FIDO Registration process

Key Appliance 3.0

TPM or HSM

KeyAppliance

CryptoEngine

CryptoCabinet

PKI2FIDO

FIDO Sign-On

SEDOS

LDAP Directory

SAFT

Browser displaying a dialog during
FIDO Registration process (FIDO U2F Server)

JavaScript previously
loaded by

fido_register.phtml

U2f-api.js

FidoService.php

Preregistration.php

Magento Server

manufacturer designed into the process, the Security Key generates a new ECDSA key-pair,
uses the newly-generated private-key from the key-pair to digitally sign the nonce, and
assembles a package of information to return to the browser. The browser sends the
package to Registration.php, which in turn sends the package to FidoService.php, which
finally calls the register webservice operation on CryptoEngine to register the newly-
generated public key with the FIDO server.

During this process, fido_register.phtml displays a modal dialog to notify users of progress
and/or error messages should something go wrong. The modal dialog is cosmetic and any
interaction with it - such as closing it - does not effect the operation. The operation
continues on until it succeeds or fails.

This last part of the registration process is shown in the diagram below:

Background on the Checkout process

The FIDO Authentication process is complex because the FIDOU2FAuthenticator module
must integrate with Magento's default checkout workflow process. Before we begin the
discussion of the FIDO Authentication process, a brief background of the default checkout
workflow is presented.

Magento's default checkout workflow is as follows:

1. Customers browse the e-commerce website to purchase one or more items;

2. They place and remove items from the store in and out of their virtual shopping
cart, until they decide to purchase the items in their shopping cart;

3. They click the “Proceed to Checkout” button;

4. At this point, the checkout process requires them to fill out required billing and
shipping information, and click the “Place Order” button;

5. This causes the browser to run JavaScript code which makes an AJAX call to submit
the shopping cart, billing address, and payment information to the Magento server;

6. The Magento server processes the information and saves it to its database - or
returns an error if there is an exception – confirming the conclusion of the
transaction.

8

Figure 5: Third, and final, part of the FIDO Registration process

Key Appliance 3.0

TPM or HSM

KeyAppliance

CryptoEngine

CryptoCabinet

PKI2FIDO

FIDO Sign-On

SEDOS

LDAP Directory

SAFT

Browser displaying a dialog during
FIDO Registration process (FIDO U2F Server)

JavaScript previously
loaded by

fido_register.phtml

U2f-api.js

FidoService.php

Registration.php

Magento Server

The workflow is displayed below:

FIDO Authentication

The FIDOU2FAuthenticator module, when installed, will inject itself into the workflow
described above. The primary modification FIDO Authentication makes to the checkout
process is to override Magento_Checkout/view/payment/default.js's placeOrder function.

1. The new placeOrder function makes an AJAX call to the RiskAssessor.php on the
Magento server to determine whether FIDO Authentication is required (based on
this PoC's rule to check whether the total order is greater than $25);

2. If the total is less than $25, the checkout data is sent to the Magento server to be
persisted directly without any FIDO actions. However, if the order total exceeds
$25, another AJAX call is made to FidoService.php to request a FIDO challenge from
CryptoEngine. This is accomplished by FidoService.php making a
preauthenticate webservice request to CryptoEngine, the FIDO U2F server.
FidoService.php returns the challenge nonce to the calling JavaScript in the
customer's browser;

3. Upon receiving the challenge, the browser interacts with u2f-api.js to prompt the
customer to digitally sign the challenge using their FIDO Security Key;

4. Once the challenge nonce has been signed using the FIDO Security Key, the digital
signature is appended to checkout-data normally sent to the Magento server;

5. On the server, where Magento_Checkout/Model/PaymentInformationManagement's
savePaymentInformationAndPlaceOrder function has been over-ridden,
Magento receives the checkout-data and checks again if FIDO Authentication is
required. This is to ensure that webservice requests to the back-end are not
manipulated to bypass FIDO strong-authentication;

6. If FIDO strong-authentication is not required, Magento goes through the standard
checkout flow and persists the transaction. If FIDO strong-authentication is
required, the over-ridden code in PIMOverrideFidoAuthenticate.php checks for the
digital signature bytes appended to the checkout-data;

9

Figure 6: Magento2 Checkout Workflow

Customer shops
at Magento store

Customer proceeds
to Checkout

Customer clicks on
“Place Order” button

* placeOrder is in Magento_Checkout::view/frontend/web/js/view/payment/default.js
savePaymentInformationAndPlaceOrder is in Magento_Checkout::PaymentInformationManagement

placeOrder* function
gathers order info,

performs sanity checks
& makes AJAX call

Magento_Checkout::
view/frontend/web/

js/action/place-order.js

Magento_Checkout::
view/frontend/web/

js/model/place-order.js

magento2/lib/web/
mage/storage.js

Magento_Checkout::
etc/webapi.xml

Function# saves
information to

database

7. If the signature bytes are present, PIMOverrideFidoAuthenticate.php calls the
authenticate webservice operation (using FidoService.php) on Cryptoengine with
the signature bytes;

8. If the authenticate webservice returns successfully,
PIMOverrideFidoAuthenticate.php continues with the checkout process, persists
transaction data to the database and confirms the transaction to the customer. A
failed response to the authenticate webservice returns an error to the customer and
the checkout fails.

In the browser, a modal dialog provides status messages on the FIDO strong-authentication
process executing in the background (if FIDO strong-authentication is determined to be
necessary); otherwise, the FIDO dialog does not display itself. As in the FIDO Registration
workflow, the modal dialog is cosmetic. Closing the modal dialog does not stop the FIDO
Authentication process and interacting with the browser window in any way does not
change the behavior.

The following diagram shows the FIDO Authentication process at a high-level:

10

Figure 7: Overview of the FIDO Authentication process

Key Appliance 3.0

TPM or HSM

KeyAppliance

CryptoEngine

CryptoCabinet

PKI2FIDO

FIDO Sign-On

SEDOS

LDAP Directory

SAFT

FidoService.php

RiskAssessor.php

PIMOverride
FidoAuthenticate.php

Magento Server
(FIDO U2F Server)Browser displaying a dialog during

FIDO Authentication process

default-
payment-
override.js

u2f-api.js

Explanation of Files in the StrongAuth Magento PoC

This section explains various files referenced and/or modified by StrongAuth to implement
FIDO U2F strong-authentication for this proof-of-concept implementation. If the reader is
familiar with Magento2, this section may be skipped; others may find it helpful in
understanding what must be done to integrate FIDO U2F into their Magento2 instance in a
production environment.

Magento2 includes a number of boilerplate/configuration files: composer.json and
registration.php are those that must be included in every Magento2 module - they identify
the module to the Magento2 system.

The etc folder contains configuration files:

• module.xml is a boilerplate file;

• di.xml tells Magento2 to override the default PaymentInformationManagement.php
file with StrongAuth's custom version (named PIMOverrideFidoAuthenticate.php);

• extension_attributes.xml tells Magento2 that purchase-transaction data sent to the
server may have signature data appended to it, which can be identified by the
attribute name “signature”;

• etc/frontend/di.xml adds an AdditionalConfigProvider that supplies the strong-
authentication modal dialog with the file-name of loading.gif;

• Finally, routes.xml tells Magento2 that this module defines controllers that will
handle URL requests to “fidou2fauthenticator”.

The Api folder contains interface files describing valid functions of the models FidoService
and RiskAssessor. The interface files are, aptly, named FidoServiceInterface.php and
RiskAssessorInterface.php.

The Block folder contains server-side logic to generate views displayed by the browser.
Specifically, it contains one file, Register.php that provides the base URL for AJAX calls in
the registration workflow and returns the number of Security Keys registered to a user.

The Controller folder contains controllers to handle AJAX calls from the browser. The
controllers map to CryptoEngine webservices, such as Preregistration, Registration and
PreAuthentication. Since FIDO Authentication is handled as part of the checkout process,
and is performed in conjunction with payment data, an explicit controller for FIDO
Authentication is not defined here, but is included as part of PIMOverrideFidoAuthentication.
It also contains the RiskAssessor.php controller to call the RiskAssessor.php code in the
Model folder (see below) which performs the actual risk-assessment.

The Model folder contains the following server-side logic files:

• AdditionalConfigProvider.php retrieves the static URL of the loading.gif image and
adds it to the array of variables necessary for the browser client to deliver a better
user-experience;

• FidoService.php makes the actual webservice calls to the CryptoEngine, the FIDO
U2F server;

• RiskAssessor.php makes the risk-decision in this PoC implementation – to check if
the order's total value is greater than $25 – and returns a boolean value indicating if
FIDO strong-authentication is necessary or not;

• PIMOverrideFidoAuthentication.php implements the server-side logic to check, once
again, if FIDO strong-authentication is necessary, checking if signature bytes are
appended to payment data, verifying if the supplied digital signature is valid
(through FidoService.php) and persisting the order transaction.

The view folder contains the client side logic. Since all FIDO-related work-flows in this PoC
are intended for customer interaction only, there is a frontend folder inside the view folder
(as opposed to an adminhtml folder which would normally define views for Administrators).

11

Within the frontend folder, there are four groups of files:

• The first group contains files related to the registration workflow:
layout/customer_account_index.xml directs Magento to load
templates/fido_register.phtml above the “Recent Orders” section of the Customer
dashboard in the browser. fido_register.phtml coordinates the entire FIDO
Registration workflow as was described in the FIDO Registration section of this
document;

• The second group contains files related to the modal dialog:
layout/checkout_index_index.xml appends JavaScript from web/js/view/checkout-
modal.js to JavaScript normally loaded on checkout pages. checkout-modal.js, in
turn, loads web/template/checkout-modal.html with HTML that is rendered on the
checkout page;

• The third group of files provide client-side logic to perform FIDO Authentication.
requirejs-config.js is a configuration file to load JavaScript libraries found in
web/js/lib - including u2f.js and common.js which are part of the standard
distribution for FIDO U2F from Google for use with the Chrome browser - and
overrides the default JavaScript in Magento_Checkout/js/view/payment/default.js
with web/js/default-override.js. The latter file - default-override.js - provides client-
side logic as described in the FIDO Authentication section, including requesting the
challenge nonce, getting the challenge nonce digitally signed by the FIDO Security
Key, returning the digital signature, and updating the modal dialog with progress
information.

• The last group of files found in the view/frontend folder are image files found in
web/images/.

12

Troubleshooting Problems

Code was modified but change did not take effect.

The most common reason for this issue is that Magento's cache was not cleared. Clear the
browser cache from the browser's admin console or open up a terminal, change to the
Magento directory (/var/www/html/fidodemo), and run the command:

php bin/mangeto cache:flush

Magento is unable to read the WSDL of the FIDO server.

There are three possible reasons for this:

• The first is that the fully qualified domain name (FQDN) of the FIDO server was
defined incorrectly. This can be fixed by modifying the webservice description
language (WSDL) constant in StrongAuth_FidoValidator/Model/FidoService.php.

• The second is that the FIDO server has a self-signed certificate that httpd does not
trust. This can be fixed by adding the self-signed certificate to the trusted
certificate-store located in /etc/pki/tls/certs/ca-bundle.crt.

• The third, is that SELinux's security policy is blocking the outbound port used by
httpd to connect to the FIDO server. This can be fixed by disabling SELinux for
testing purposes. In Production environments, it is recommended that SELinux
rules be modified to permit httpd to connect to the FIDO server.

Error 500 when attempting to access the home page.

This is not a FIDO-related issue, but can manifest itself as a Magento-httpd
misconfiguration. While there are many possible ways this error can occur, the most
common reason is due to incorrect file permissions. For testing purposes, running the
command

cd /var/www/html/fidodemo && find var vendor pub/static pub/media app/etc
-type f -exec chmod 777 {} \; && find var vendor pub/static pub/media app/etc
-type d -exec chmod 777 {} \; && chmod 777 bin/magento

should fix the problem to enable the Magento home-page to be accessible. Please note
that the command shown above is a concatenation of multiple commands executed as a
single command; so please execute them in a single command, or execute the following in
sequence:

cd /var/www/html/fidodemo

find var vendor pub/static pub/media app/etc -type f -exec chmod 777 {} \;

find var vendor pub/static pub/media app/etc -type d -exec chmod 777 {} \;

chmod 777 bin/magento

13

	Copyrights & Notices
	

	Contents
	Overview
	Mechanics
	FIDO Registration
	Background on the Checkout process
	FIDO Authentication
	Explanation of Files in the StrongAuth Magento PoC
	Troubleshooting Problems

