Locally Weighted Projection Regression (LWPR) is a fully incremental, online algorithm for non-linear function approximation in high dimensional spaces, capable of handling redundant and irrelevant input dimensions. At its core, it uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space. A locally weighted variant of Partial Least Squares (PLS) is employed for doing the dimensionality reduction. Please cite:
[1] Sethu Vijayakumar, Aaron D'Souza and Stefan Schaal, Incremental Online Learning in High Dimensions, Neural Computation, vol. 17, no. 12, pp. 2602-2634 (2005).
[2] Stefan Klanke, Sethu Vijayakumar and Stefan Schaal, A Library for Locally Weighted Projection Regression, Journal of Machine Learning Research (JMLR), vol. 9, pp. 623--626 (2008).
More details and usage guidelines on the code website.

Project Activity

See All Activity >

License

GNU Library or Lesser General Public License version 2.0 (LGPLv2), Other License

Follow LWPR

LWPR Web Site

Other Useful Business Software
Resolve Support Tickets 2x Faster​ with ServoDesk Icon
Resolve Support Tickets 2x Faster​ with ServoDesk

Full access to Enterprise features. No credit card required.

What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
Try ServoDesk for free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of LWPR!