Name | Modified | Size | Downloads / Week |
---|---|---|---|
Parent folder | |||
lonestar_test.m | 2013-06-04 | 4.7 kB | |
lonestar_train.m | 2013-06-04 | 13.9 kB | |
LICENSE | 2013-06-03 | 18.1 kB | |
README | 2013-06-03 | 1.5 kB | |
Totals: 4 Items | 38.2 kB | 0 |
--------------------------------------------------------------------------- Step 1: Obtain MATLAB cvx toolbox. --------------------------------------------------------------------------- Download it from http://cvxr.com/cvx/download/ unzip or untar it in some directory say CVX_DIR. Run CVX_DIR/cvx_setup.m --------------------------------------------------------------------------- Step 2: Train lonestar algorithm --------------------------------------------------------------------------- Lonestar is a supervised binary classification and feature reduction algorithm. It requires: 1) input data, a real matrix of size say m-by-n, where each row represents features (genes) and columns represents samples. 2) a binary class labels associated with each of n samples. These class labels should be a n-dim vector with values of either 1 or 2. Depending on size of input this step may take long time to finish. For a typical case when input is 12K-by-200 with about 800 statistically significant features, it takes around 20 minutes on a standard desktop (say i5-2540M CPU) Please see detailed description under lonestar_train.m --------------------------------------------------------------------------- Step 2: Classify new samples with the classifier produced by step 2. --------------------------------------------------------------------------- Please see detailed description under lonestar_test.m