
libmusical 0.9

P. van Kranenburg

October 5, 2011

Contents

1 Introduction 2

2 Alignment 2

3 Basic Architecture 3
3.1 Alignment . 3
3.2 Data representation and input . 4
3.3 Results . 4
3.4 Currently Available Alignment Algorithms 4
3.5 Future Available Alignment Algorithms 5
3.6 Currently Available Gap Raters 5

4 Specializations 5
4.1 NLB . 5

4.1.1 Classes . 6
4.1.2 Example . 6

4.2 Midi . 7
4.2.1 Classes . 7

5 Applications 8
5.1 nlbdistmat . 8
5.2 alignmidi . 8

6 Implement a specific alignment task 8

7 Roadmap 9

8 Misc 9
8.1 Compilation . 9
8.2 Levenshtein distance . 10

References 10

1

1 Introduction

libmusical is a c++-software library that provides classes and functions for align-
ment of sequences of symbols. The intended field of application is the alignment
of musical sequences. However, the alignment algorithms are provided in their
abstract forms. It is easy to apply the algorithms in other contexts as well.

This library is a deliverable of the NWO WITCHCRAFTPLUS software-
project.1 One of the aims of this project is to provide robust implementations of
software that was developed within the WITCHCRAFT research-project (Wier-
ing et al., 2009).2

2 Alignment

Cconsider two sequences of symbols x : x1, . . . , xi, . . . , xn, and y : y1, . . . , yj , . . . , ym.

X1	 X2	 Xn	

Y1	 Y2	 Ym	

…	

…	

A large number of alignments is possible. E.g., for n = 7 and m = 6,

X1	 X2	 X3	 X4	 X5	 X6	 X7	

Y1	 Y2	 Y3	 Y4	 Y6	 Y5	

X	

X	 X	

or

X1	 X2	 X3	 X4	 X5	 X6	 X7	

Y1	 Y2	 Y3	 Y4	 Y6	 Y5	

X	

X	 X	

etc.
In constructing an alignment of x and y, symbol xi can either be aligned

with a symbol from sequence y or with a gap. Each alignment of two sequences

1http://www.catchplus.nl/diensten/deelprojecten/witchcraftplus/
2http://www.cs.uu.nl/research/projects/witchcraft/

2

gets a score, which is the sum of the scores of the alignments of the individual
sybols. Alignment algorithms find the (or one of the) alignemnt with the highest
score. Since the solution space is quite large, a dynamic programming approach
is taken to find the optimal alignment efficiently. In the simplest form, the
optimal alignment and its score are found by filling a matrix D recursively
according to:

D(i, j) = max

 D(i− 1, j − 1) + S(xi, yj)
D(i− 1, j) − γ
D(i, j − 1) − γ

, (1)

in which S(xi, yj) is a similarity measure for symbols, γ is the (fixed) gap penalty,
D(0, 0) = 0, D(i, 0) = −iγ, and D(0, j) = −jγ. D(i, j) contains the score of the
optimal alignment up to xi and yj and therefore, D(m,n) contains the score of
the optimal alignment of the complete sequences. We can obtain the alignment
itself by tracing back from D(m,n) to D(0, 0); the algorithm has both time and
space complexity O(nm). This algorithm is known as the Needleman-Wunsch
algorithm Needleman and Wunsch (1970).

3 Basic Architecture

3.1 Alignment

For an alignment, we need:

• two sequences of symbols;

• a similarity measure for symbols;

• a penalty function for insertion of gaps;

• the alignment algorithm itself.

For all four of these elements, abstract classes are present in the library. To
implement a specialization for the alignment of a specific kind of symbols, spe-
cific classes should be derived from the provided abstract classes. The abstract
classes are defined in header file libmusical.h. Everything is in namespace
musical.

The most important abstract classes are:

Algorithm An alignment algorithm.

Symbol A symbol.

Sequence A sequence of symbols.

Sequences Two sequences of symbols that should be aligned. We use a specific
class for this because the similarity measure for symbols might need to use
the two entire sequences for computation of certain variables.

3

SimilarityRater Returns the similarity of two symbols.

GapRater Returns scores for insertions of one or more gaps.

Reader This class creates an object of class Sequence, containing a sequence
of Symbol objects.

An alignment class has a Sequences-object, a SimilarityRater and a GapRater.
The last two should be instances of derived classes and the Sequence-object could
be an instance of a derived class. The algorithms handle sequences, symbols and
raters at an abstract level. The SimilarityRater is the only class that need to
know what kind of Symbols the sequence consists of.

3.2 Data representation and input

In the current implementation classes are provided to read a sequence from a
JSON string with specific layout. As an example:

{
"Name of Sequence":
{
"symbols":
[

{"attribute 1":value,"attribute 2":value,"attribute 3":value},
{"attribute 1":value,"attribute 2":value,"attribute 3":value},
{"attribute 1":value,"attribute 2":value,"attribute 3":value},
{"attribute 1":value,"attribute 2":value,"attribute 3":value},
{"attribute 1":value,"attribute 2":value,"attribute 3":value}

]
}

}

The name of the top-level object is the name of the sequence. The symbols
consist of attributes.

The following (abstract) classes are involved in reading the data:

JSONSource The task for this class is to get a JSON string from somewhere.

JSONReader Derived from Reader. This creates a Sequence from a JSON
source.

3.3 Results

Objects of the class AlignmentVisualizer are able to produce textual or
graphical representations of the resulting alignemnt. Currently, one method is
provided that outputs a textual description of the alignment to the standard
output stream.

3.4 Currently Available Alignment Algorithms

Currently, the following variants of the alignment algorithm are implemented:

4

• Needleman-Wunsch (Needleman and Wunsch, 1970). Global alignment.
One symbol from x is aligned with at most one symbol from y, and vice
versa. Only gaps of length 1 are taken into account.

• Smith-Waterman (1981). Local alignment. This algorithm finds one or
more local alignments, i.e., parts of the sequences that approximately
match. One symbol from x is aligned with at most one symbol from
y, and vice versa. Only gaps of length 1 are taken into account.

• Needleman-Wunsch-Gotoh (Gotoh, 1982). Global alignment with opti-
mization for affine gap cost function. One symbol from x is aligned with
at most one symbol from y, and vice versa.

3.5 Future Available Alignment Algorithms

Planned for future implementation:

• General Alignment. One or more symbols from x can be aligned with zero
or more symbols from y, and vice versa. A continuous gap score function
is employed.

• Smith-Waterman-Gotoh. Local alignment with affine gap cost.

• Mongeau-Sankoff variant (Mongeau and Sankoff, 1990). One symbol from
x can be aligned with zero or more symbols from y, and vice versa. Only
gaps of length 1 are taken into account.

3.6 Currently Available Gap Raters

The following gap raters are currently available:

• ConstantLinearGapRater. This returns a fixed score for a gap of
lenght 1. To be used with NeedlemanWunsch and SmithWaterman.

• ConstantAffineGapRater. This returns a fixed score for a gap open-
ing and a fixed score for a gap extension. To be used with NeedlemanWunschGotoh.

4 Specializations

4.1 NLB

A specialization is provided under the name “nlb” (Nederlandse Liederenbank,
i.e. Database of Dutch Songs), defined in header file OptiAlignment.h. This
implements the configuration that proved best in Van Kranenburg (2010, Ch.6).
Each symbol consists of three attributes: pitch in base 40 representation, prhase
position and metric weight. These attributes are used by the similarity measure
(OptiSimilarityRater) to compute the similarity of two symbols.

5

4.1.1 Classes

The following classes have been added for this specialization:

OptiSymbol Symbol with three data members: pitch in base 40 representa-
tion, prhase position and metric weight.

OptiSequence Sequence of OptiSymbols. As an extra data-member, this class
has a pitch histogram describing the pitch distribution in the melody.

OptiSequences Pair of OptiSequences. This class has a method to compute
the shift of the histogram of the second sequence such that the intersection
of both histograms is maximal. This is the shift in pitch that is needed to
make the alignment transposition invariant.

OptiSimilarityRater Implements the similarity measure of OptiSymbols as
described in Van Kranenburg (2010, Ch.6).

OptiJSONReader Converts a JSON representation of the sequence to an
OptiSequence-object. The JSON string can provide a pitch histogram,
as shown below. If it does not, then the histogram is generated on the fly.
This histogram will be used to make the alignment transposition invariant.

Example of a JSON representation of a OptiSequence (only the first 5 symbols
are shown):

{
"NLB074575_01":
{
"symbols":
[

{"pitch40":129,"phrasepos":0,"ima":0.415755},
{"pitch40":146,"phrasepos":0.1,"ima":0.568928},
{"pitch40":152,"phrasepos":0.25,"ima":0.086433},
{"pitch40":146,"phrasepos":0.3,"ima":0.45186},
{"pitch40":141,"phrasepos":0.35,"ima":0.102845}

],
"pitch40histogram":
{

"":{"pitch40":129,"value":0.148148},
"":{"pitch40":135,"value":0.055556},
"":{"pitch40":141,"value":0.074074},
"":{"pitch40":146,"value":0.277778},
"":{"pitch40":152,"value":0.222222},
"":{"pitch40":158,"value":0.148148},
"":{"pitch40":163,"value":0.037037},
"":{"pitch40":169,"value":0.037037}

}
}

}

4.1.2 Example

6

#include <iostream>
using namespace std;

#include "libmusical.h"
#include "OptiAlignment.h"

int main(int argc, char * argv[]) {

// Get a JSON string for sequence 1 from a file
// Create a Reader object for the JSON string
musical::OptiJSONReader mr1(new musical::JSONFileSource("/path/to/melody1.json"));

// Ask the Reader to generate the Sequence
musical::OptiSequence * seq1 =

static_cast<musical::OptiSequence*>(mr1.generateSequence());

// Do the same for sequence 2
musical::OptiJSONReader mr2(new musical::JSONFileSource("/path/to/melody2.json"));
musical::OptiSequence * seq2 =

static_cast<musical::OptiSequence*>(mr2.generateSequence());

// Encapsulate the two sequences in a Sequences object
musical::OptiSequences seqs = musical::OptiSequences(seq1,seq2);

// Create an alignment algorithm
musical::NeedlemanWunschGotoh nw = musical::NeedlemanWunschGotoh(&seqs);

// Assign a similarity rater
nw.setSimilarityRater(new musical::OptiSimilarityRater());

// Assign a gap rater
nw.setGapRater(new musical::ConstantLinearGapRater(-0.8));

// Do the alignment
nw.doAlign();

// Print the score
cout << "Score:" << nw.getScore() << endl;

// Print the alignment to stdout
musical::AlignmentVisualizer av(&nw);
av.basicStdoutReport();

return 0;
}

In a Unix environment this can be compiled with the following command:

g++ tst.cpp -I/usr/local/include/libmusical -lmusical

assuming that libmusical was installed in /usr/local.

4.2 Midi

Another specialization is provided for midi files. Classes are defined in MidiAlignment.h.

4.2.1 Classes

The following classes have been added for this specialization:

7

MidiSymbol Symbol with three data members: pitch in base 12 representa-
tion, onset and duration.

MidiExactPitchIntervalSimilarityRater Returns score 1.0 if the interval
of the note from sequence 1 with its previous note is exactly the same as
the interval of the note from sequence 2 with its previous note. Returns
-1.0 otherwise.

MidiFileReader Converts a midi file into a Sequence-object, containing MidiSym-
bols.

5 Applications

5.1 nlbdistmat

nlbdistmat creates a distance matrix for melodies in NLB JSON-encoding,
as shown in section 4.1. It accepts two files as input. These files should list the
filenames of the melodies, one filename on each line. The first file contains the
rows, the second the columns. Example:

nlbdistmat fullcollection.flist queries.flist

5.2 alignmidi

alignmidi aligns two monophonic midi files and writes the alignment to the
standard output stream.

alignmidi file1.mid file2.mid

6 Implement a specific alignment task

This section contains the steps for adding another specialization with name XX:

1. Derive XXSymbol from Symbol. XXSymbol is supposed to have data
memebers that correspond to the attributes of the symbol.

2. Optional: Derive XXSequence from Sequence. Only do this if you want
to add data memebers or functions to the sequence.

3. Optional: Derive XXSequences from Sequences. Only do this if you
want to add data memebers or functions to the pair of sequences.

4. Derive a reader class XXReader from Reader. Override the member
function getSequence(). It should convert an input encoding to a XXSequence
object.

8

5. Derive XXSimilarityRater from SimilarityRater. Override mem-
ber function getScore(...). It should return the similarity of a subset
of symbols from sequence x with a subset of symbols from sequence y. For
the current alogirhtms only the scores for alignment of one symbol from
x and one symbol from y is required (see section 3.4).

6. Optional: Derive XXGapRater from GapRater.

7. Optional: Derive XXAlignmentVisualizer from AlignmentVisualizer.

After performing all these steps, the Sequences, and the raters can be assigned
to an alignment algorithm.

7 Roadmap

The current version, 0.9, implements three alignment algorithms and two appli-
cations for musical sequences. There are, however, remaining issues that have
to be sovled. Furthermore, future versions will provide new features and new
alignment algorithms. For version 1.0 the following improvements are planned:

• Improvements in exception handling. This will make the software more
robust.

• Adding Smith-Waterman-Gotoh algorithm.

8 Misc

8.1 Compilation

The latest version is available at: http://sourceforge.net/projects/
libmusical/

To install, issue the following commands in a unix shell:

tar xfvz libmusical-0.9-Source.tar.gz
cd libmusical-0.9-Source
mkdir build
cd build
cmake ..
make
sudo make install

This will install the headers, library and two applications (nlbdistmat and
alignmidi) into /usr/local.

The example application alignmidi aligns two midi files:

alignmidi file1.mid file2.mid

9

8.2 Levenshtein distance

The Levenshtein edit distance (Levenshtein, 1966) can be obtained by using the
Needleman-Wunsch algorithm with fixed gap score of -1 and a similarityrater
that returns 0 for a perfect match and -1 otherwhise. The score of the algorithm
is the negation of the edit distance because it counts the edits (substitutions
and insertions/deletions). Since the operator== should be overloaded for the
specific kind of symbol at hand, such a similarity rater should be implemented
for every kind of symbol.

Code example, assuming that the sequences consist of symbols that are ac-
cepted by a XXLevenshteinSimilarityRater:

// Assume we already have:
// Sequences * seqs, which contains:
// Sequence * seq1
// Sequence * seq2

// Create the similarity rater
musical::XXLevenshteinSimilarityRater * lr =

new musical::XXLevenshteinSimilarityRater();

// Create the gap rater with gap score -1.0
musical::ConstantLinearGapRater * gr =

new ConstantLinearGapRater(-1.0);

// Create the aligner
musical::NeedlemanWunsch nw = musical::NeedlemanWunsch(seqs);
nw.setSimilarityRater(lr);
mw.setGapRater(gr);

// Do the alignment
nw.doAlign();

// Now the edit distance is available as the score of the alignment
cout << "Edit distance:" << nw.getScore() << endl;

References

Gotoh, O. (1982). An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162:705–708.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady, 10(8):707–710.

Mongeau, M. and Sankoff, D. (1990). Comparison of musical sequences. Com-
puters and the Humanities, 24:161–175.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443–453.

10

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195–197.

Van Kranenburg, P. (2010). A Computational Approach to Content-Based Re-
trieval of Folk Song Melodies. PhD thesis, Utrecht University, Utrecht.

Wiering, F., Veltkamp, R. C., Garbers, J., Volk, A., and Van Kranenburg,
P. (2009). Modelling folksong melodies. Interdisciplinary Science Reviews,
34(2–3):154–171.

11

