LAML is a stand-alone pure Java library for linear algebra and machine learning. The goal is to build efficient and easy-to-use linear algebra and machine learning libraries. The reason why linear algebra and machine learning are built together is that full control of the basic data structures for matrices and vectors is required to have fast implementation for machine learning methods. Additionally, LAML provides a lot of commonly used matrix functions in the same signature to MATLAB, thus can also be used to manually convert MATLAB code to Java code.

Features

  • Stand-alone Java library, completely cross-platform
  • Built-in Linear Algebra (LA) library
  • Full control of matrices and vectors
  • Many general-purpose optimization algorithms
  • Fast implementation of Machine Learning (ML) methods
  • Matrix functions with almost the same signature to MATLAB
  • Well documented source code and friendly API, very easy to use

Project Activity

See All Activity >

Categories

Machine Learning

Follow LAML:Linear Algebra and Machine Learning

LAML:Linear Algebra and Machine Learning Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

Build gen AI apps with an all-in-one modern database: MongoDB Atlas

MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of LAML:Linear Algebra and Machine Learning!

Additional Project Details

Programming Language

Java

Related Categories

Java Machine Learning Software

Registered

2013-12-18