
Kactus2 intro/demo
Feb 8 2013

Prof. Timo D. Hämäläinen & research group
Tampere University of Technology
Department of Pervasive Systems

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 1

Some past projects

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 2

TUT NeuroComputer (1996)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

4x DSP-processor Interface
to host PC

7x FPGA

3

PARNEU (1998)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 4

TUTWLAN Medium Access
Control Unit (1999)

MAC-processor

External SRAM socket

Radio Interface

To
 P

C
I I

n
te

rf
ac

e

R
ad

io
 M

o
d

u
le

 C
o

n
n

e
ct

o
r

EPROM (for testing)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 5

TUTWLAN (2000)

MAC

(ADSP 21062)

Radio

(Intersil PRISM

2,4GHz no MAC)

Host

Computer

(PC)
Radio

Interface

FPGA (XCV800)

PCI

Interface

External SRAM

HW accelerated functions

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 6

TUTWLAN (2004)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

InterSil 2.4 GHz
Radio (MACless) Altera Excalibur

(ARM + FPGA)

TUTMAC UML2.0 Design

pUserpUser
pMngUserpMngUser

pPhypPhy

ui : UserInterface

ui : UserInterface

UserPortUserPort

DPPortDPPort

MngPortMngPort

<<ApplicationProcess>>

mng : Management
<<ApplicationProcess>>

mng : Management

UIPortUIPort

RChPortRChPort

DPPortDPPort

MngUserPortMngUserPort

RMngPortRMngPort

mngmt_ui

MngToUi UiToMng

mngmt_ui

MngToUi UiToMng

<<ApplicationProcess>>

rca : RadioChannelAccess
<<ApplicationProcess>>

rca : RadioChannelAccess

DataPortDataPort MngPortMngPort

PhyPortPhyPort
RMngPortRMngPort

dp : DataProcessing

dp : DataProcessing

UserInterfacePortUserInterfacePort

ChannelAccessPortChannelAccessPort

ManagementPortManagementPort

<<ApplicationProcess>>

rmng : RadioManagement
<<ApplicationProcess>>

rmng : RadioManagement

RChPortRChPort PhyPortPhyPort

MngPortMngPort

rch_mng

MngToRCh

RChToMng

rch_mng

MngToRCh

RChToMng

dp_ui
DpToUi

UiToDp
dp_ui

DpToUi

UiToDp dp_mng

MngToDp

DpToMng
dp_mng

MngToDp

DpToMng

rch_dp
RChToDp

DpToRCh
rch_dp

RChToDp

DpToRCh

rch_phy
PhyToRCh

RChToPhy

rch_phy
PhyToRCh

RChToPhy

ui_user
UiToUUToUi
ui_user
UiToUUToUi mng_mngUser

MngToMngUserMngUserToMng
mng_mngUser
MngToMngUserMngUserToMng

rmng_mng

MngToRMng

RMngToMng

rmng_mng

MngToRMng

RMngToMng

rca_rmngRChToRMngRMngToRChrca_rmngRChToRMngRMngToRCh

rmng_phy

PhyToRMng

RMngToPhy

rmng_phy

PhyToRMng

RMngToPhy

Bluetooth module

7

TUTWLAN PocketPC/Excalibur
Platform (2005)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 8

Multi-FPGA Platform (2006)
Automatic resource management and allocation
Tested with 35 processors, 18 Hardware

accelerators, 5 Other IPs with MPEG-4 video
encoder

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Bridge 01 Bridge 12

FPGA board #1 FPGA board #0 FPGA board #2

9

MPEG-4-SP on FPGA-based
Massively Parallel MP-SoC (2007)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

ME

SN

RM

SN

M

SN

HM

SN
AN

ME

SN

ME

SN

DQ

SN

DQ

SN

DQ

SN

DQ

SN

ME

SN

ME

SN

ME

SN

DQ

SN

DQ

SN

DQ

SN

ME

SN

ME

SN

ME

SN

DQ

SN

DQ

SN

Communication network

FPGA board #0

Stratix II S180

FPGA board #1

Stratix II S180

HIBIHIBI

FPGA board #2

Stratix II S180

HIBI

Service Description of the system

EN

SN
AN

RM

SN

ME

SN

DQ

SN

M

SN

Master

CPU

Encoding

service

Resource

Manager

Full--pixel

Motion est.

DCT-Q-

IDCT-IQ

MemoryLegend N

SN

Network

Monitor

SoC Architecture Mapping to FPGA prototype

bridge bridge

h
a

n
d

s
h

.

h
a

n
d

s
h

.

H
IB

I
w

ra
p

.

H
IB

I
w

ra
p

.

H
IB

I
w

ra
p

.

H
IB

I
w

ra
p

.

h
a

n
d

s
h

.

h
a

n
d

s
h

.

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

EN

SN

• Multiple boards are seen as one from the programmers point of view

• Shared IP blocks hidden from processors by a run-time resource

manager

10

Funbase Baseboard (2010)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

 Key Features
- Altera Arria II FPGA 190k LUT
- ComExpress CPU module connector
- DDR2 and QDR 2 memory for FPGA
- Analog video inputs
- Altera HSMC connector for add on
IO cards

 Peripherals
- 4 x Gigabit Ethernets from FPGA
- 4 x SFP module slots from FPGA
- 4 x Analog video codecs connected
to FPGA
- 3 x application UARTs from FPGA
- 1 x Altera HSMC connector
- On board accurate low jitter clock
source.

11

Model-based system design methods
and tools research at TUT

2000 2001 2002 2003 2004 2005 2006

UML2.0 based
MP-SoC video+WLAN

ITEA Silver Award
(MARTES-project)

2007 2008 2009 2010

SDL-based DSP+FPGA design
for custom WLAN MAC

2011

Kactus1 tool
IP-XACT 1.2

2012

'Video player user'

StoreLiveVideo

ShowLiveVideo

ShowVideoFromMemory

SendLiveVideo

ReceiveVideo

SendVideoFromMemory

'Remote player terminal'

ui : UserInterface

ui : UserInterface

pUserpUser

pDatapData

pMngpMng

pFlowControlpFlowControl

<<ApplicationProcess>>

mng : Management [1] / 1
<<ApplicationProcess>>

mng : Management [1] / 1
pUIpUI

pSSpSS

pMngUserpMngUser

pRMngpRMng

rca : RadioChannelAccess

rca : RadioChannelAccess

pDatapData

pPhypPhy pRMngpRMng

dp : DataProcessing

dp : DataProcessing

pDataUppDataUp

pDataDownpDataDown

<<ApplicationProcess>>

rmng : RadioManagement [1] / 1
<<ApplicationProcess>>

rmng : RadioManagement [1] / 1
pChannelAccesspChannelAccess pPhypPhy

pMngpMng

pUserpUser pMngUserpMngUser

pPhypPhy

ss : ServiceSupport

ss : ServiceSupport

pDatapDatapFlowControlpFlowControl

pChannelAccesspChannelAccess

pMngpMng

Kactus2 IP-XACT
1.5/IEEE1685
+ extensions

SDL

UML

Machine vision
x86+FPGA

IP-XACT

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 12

2013: What the research group
develops now
Model-based holistic system design

methodology
Modeling of design process to identify

bottlenecks
Unifying information exchange format

(metadata)

Tools implementing the methodology
Superior usability & user experience
Productivity by automating editing routines
Open source, open formats, plugins for

flexibility

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 13

Problem statement (from partner
companies)
Quickly porting (legacy) applications

between

Different product platforms

FPGA boards and PCs (development time)

HW and SW (performance)

Different CPU/FPGA chips/families

Different FPGA vendors (cost optimization)

Multitude of tools, formats

Informal documentation, manual transfer

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 14

Still typical design flow…
System design diagrams
(Visio, Powerpoint, UML)

Requirements,
constraints, capabilities
(Excel)

Behaviour (Word)

PCB design (PADS)

SoC HW implementation
(VHDL, Qsys, Quartus)

SW implementation
(C/C++, Java, IDEs)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

System simulation
(Matlab, Simulink,
SystemC, Modelsim)

Verification
(test benches)

Debug (SW tools)

Key challenge: Propagation of information is very error prone

15

Metadata-based design flow

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 16

VHDL,PCB
schematic
(product
structure)

HTML documentation

C/C++
(code)

Vendor, tool, technology neutral XML
description

(Legacy) code, physical designs,
product&process information

Example: Memory map definitions for HW and SW teams from Golden reference

State of the art and its problems
 (Auto) generate HW and SW

 Problems:
 Legacy: No time/money to re-write

1M’s of lines of low-level code to a
model

 Modeling: too many paradigms to
choose from

 User resistance: Fear loosing control
& performance when high
abstraction

 Auto/manual conflict: difficult to
make manual changes to auto-
generated code, but often required

 Tools: custom internal formats
complicate toolchain maintainability

 Usability: Graphical models difficult
to compare visually in version
control

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

High abstraction
design (application,
platform models)

Automation
(transformations)

Intermediate
descriptions
(metadata, libraries)

Implementations
(low-level languages)

Sy
st

e
m

 (
au

to
)

ge
n

e
ra

ti
o

n

17

Approach behind Kactus2 tool
development

We (auto) assemble HW
and SW parts

First: Only structural
modeling
 No generation of

behavioural code
 Special focus on

language/tool/vendor
neutral metadata
formats

Next: Inclusion of
behavioural modelling
 Embed well-known

modelling paradigms

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

High abstraction
design (application,
platform models)

Automation
(transformations)

Intermediate
descriptions
(metadata, libraries)

Implementations
(low-level languages)

D
ev

e
lo

p
in

g
sy

st
e

m
 (

au
to

)
as

se
m

b
ly

 f
ro

m
 b

o
tt

o
m

-u
p

18

IP-XACT

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

IEEE standard for packetizing IP components
 Files (source, doc, scripts…)
 Ports, interfaces
 Internal structure (hiearchical view)
 Vendor-extensions supported

Originally for HW
Machine-readable data-sheet

 Automated configuration, checking, code
generation etc. Possible

Key principle: reference by objects, not by
file names

19

IP-XACT-based Design

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Design tasks Artifacts

Library managemnt.

2. Assemble
and configure

Product creation

IP creation (HW/SW

1. Packetize

4. Generate
executables

3. Specify
new

IP-block
Metadata XML

HW, SW
Executable

Source(s)

Design
Metadata XML

Design / Integration
Tool
Metadata XML

EDA

Process
Metadata XML

20

Kactus

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Open source IP-XACT tool with GUI (C++/Qt)
 IP packetization, library import/export

 Design creation

 Generation (VHDL, doc, sim +syn scripts)

Extensions to basic IP-XACT
 Cover whole product hieararchy (IP, SoC, PCB,

product)

 Draft new components and block diagrams
quickly

 SW architecture and mapping to HW

 Communication abstraction

21

New Kactus2
Objects

IP-XACT
standard
objects

1.SW component
2.SW design
3.API definition

(SW)
4.COM definition

(SW,HW)
5.System design

(SW
architecture
mapped to HW)

6.System
component (SW
architecture)

1.Comp (HW)
Design (HW)

2.Design config
(HW)

3.Bus def
4.Abs def
5.Generator

chain

Kactus2 extensions to IP-XACT

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Implementation

Product
Hierarchy
(Physical
composition)

Firmness
(Design process)

HW

Comm. abstraction

System (HW+SW)

SW

Mutable

Fixed

Template

 IP SoC Chip Board Product

Original IP-XACT scope

Kactus2 Extensions

22

Kactus2 Implementation
extension: The layer model

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

HW platform

SW platform

Application SW

Hardware abstraction (API)

SW abstraction (API)

Communication abstraction (COM)

Hardware interconnections

Defines
structure

within one
execution

unit (e.g. a
CPU)

…

Defines structure
between
execution
units

23

Kactus2 Product hierarchy extension

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Product

Board

Chip

IP (HW/SW)

SoC

Hierarchy Information (examples)

Specifications, parts list, approvals,

PCB schematic, lay-out, test points,

Datasheets, pin maps, timing,…

Design files, tool settings, versions,…

Source files, models, documentation

St
an

d
ar

d

Ex
te

n
si

o
n

24

Kactus2 product description hierarchy
 Kactus2 uses similar levels as Gajski’s Y-model

for describing product hierarchy
 Kactus2 (IP-XACT) describes explicitly

structure, behaviour is implicit in components

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 25

Product

Board

Chip

Environments

IP (HW/SW)

SoCTest vectors

Verification IP

Testbench

Real use

Level Information (examples)

Parts list, functional spec,…

PCB schematic, app SW,…

Datasheets, pin maps,…

IP-XACT design, config,…

IP-XACT comp, drivers,…

Behavior
(Function)

Structure
(Netlist)

Physical
(Layout)

Logic

Circuit

Processor

System

 Chip/Board

Kactus2
Product
levels

Example

Following screenshots demonstrate
SW architecture of a product based on

Gajski’s Process State Machine Model of
Computation
 Processes described in C/C++

 Channels representing communication between
processes (message passing, shared variables,
events)

HW architecture (hierarchy flattened)

SW mapping on HW (flattened)

Code vs. graphical model synchrony

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 26

Gajski’s System Specification Model (PSM)
in Kactus2

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 27

C1

P5

P3

P4

d
P1

P2

d

C2

 PSM channels
= MCAPI
channels

 PSM
processes =
SW
components

 This is Kactus2
System Design
(unmapped,
shows only
SW
components
and MCAPI
channels)

System Specification
Model (Platform)
 Standard IP-XACT

method to
describe platform
components and
connections

 The design here
does not show
inclusion of
Operating
System in CPU1
and CPU2, but it
is done inside the
CPU components

 This is Kactus2
HW Design

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 28

T
X

CPU1 Mem

HW CPU2

A
rb

it
e

r

Bus1 Bus2

OS2

OS1

System Specification Model (unmapped)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 29

 Mapping performed as follows in Kactus2HW
 Select HW design (its top component) from the left-hand library that includes compatible PEs

for executing SW components
 Drag-drop it to active unmapped System Design window

 All compatible PEs appear to the design space
 Drag-drop SW component on top of HW palceholders to perform mapping

HW
instance

Process =
SW

component

Abstract
channel =

MCAPI

System Specification
Model (mapped)
 This is Kactus2

System Design
(mapped)

 Note: in addition to
MCAPI channels,
this design includes
provided and
requested SW stack
APIs and
components
 ”openmcapi_n”

includes all
application
independent SW
platform code
required to run
the application

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 30

B
ri

d
g

e

P1 P3

CPU Mem

HW IP

P5

C1, C2

A
rb

it
e
r

P4 P2

C1, C2
CPU Bus IP Bus

SW Component P_INIT_EXIT

Note: instance
name is
P_top_control

3 MCAPI
endpoints and
their local
variables

API interface
that
implements
MCAPI
functions

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 31

Code generation for P_INIT_EXIT
 Three files generated: header, implementation and user

application code template

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 32

User application code template in Kactus2 code
editor
 Assiting editor completes functions and shows available endpoints
 Basic idea: code and graphical system design are kept synchronized

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 33

1.0 1.1 1.2 1.3 1.4->2.0 2.1 2.2 2.3 2.4 2.5 ++
implemented/planned milestones current stable release

Kactus2 roadmap

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Source code
analysis

VHDL
generator

s

HW/SW
mapping

Non-
functional
properties

Behavioural
properties

HDL/C
import wiz

Design
exploration

Managing
extensions

Generator
API

HTML doc
generator

s

Generator
editor

Product
hierarchy

Design
drafting

Confidence
analysis

Graphical
comparison

API, COM
definition

SW
generators

Dependency
analysis

Policy
manager
(default
names)

Assisting
SW code

editor

Memory
map

designer

Basic
IP-XACT

IP library
SW comp
+ design

Kactus2 API Context
sensitive

help

34

Kactus2 demo

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 35

Getting started 1
 Install Kactus2 and extract e.g. Kactus2 demo library to a

suitable location on disk (most often on svn or git repo)
 Tell Kactus2 what root folders to include

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 36

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 37

Getting started 2

Filter library items by types

Filter / search items by IP-XACT
identification

DEMO: Select product (Kactus2
example library) = highest
hierarchy level in product

hierarchy

Tip: scroll by

mouse wheel to

select

Components in library

When using Kactus2, ”VLNV” is the first
thing to understand

IP-XACT standard uses the following fields

Vendor-Library-Name-Version = ”VLNV”

VLNV is stored in a XML-file associated to
the IP

The standard does not specify the contents
of VLNV strings, file names or folder names

Kactus2 gives recommendations for VLNV
and folder namings

 2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 38

Kactus2 VLNV naming
recommendation

Vendor Library Name Version

Vendor Organization Global System motion_est Fields only for tools, not user Draft

 Project Product Application

 Board HWP Communication Hibi Only for IP-XACT IP-XACT Number

 Chip Accelerator DCT design configurations: object

 SoC CPU NiosII Descriptive type

 IP Interface PCIe configuration name

 Storage DDR2_ctrl Simulation

 Support Clock RTL

 SWP API endpoint_4s Documentation

 Driver HPD

 OS eCos

 Stack TTA_MCAPI

 (free)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 39

Product

Example Product

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 40

Altera FPGA board

PC

Xilinx FPGA board/chips

Product

VLNV

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 41

Altera FPGA board

PC

Xilinx FPGA board/chips

TUT – product – myproduct – 1.0

TUT – board – masterboard – 1.0

TUT – board – std_pc – 1.0

TUT – board – slaveboard – 1.0

Nios processor
subsystem

HW platform

42

DDR2 off-chip
memory

Altera FPGA board

PC board/chips

SDRAM off-
chip memory

PCIe PHY chip

Altera FPGA chip

Xilinx FPGA board/chips

microBlaze
subsystem

uBlaze processor

HIBI interconnection

DDR
memory
controller

Custom IP
block

Video
generator

PCIe
bridge

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Nios processor
subsystem

VLNV

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 43

DDR2 off-chip
memory

Altera FPGA board

PC board/chips

SDRAM off-
chip memory

PCIe PHY chip

Altera FPGA chip

Xilinx FPGA board/chips

microBlaze
subsystem

uBlaze processor

HIBI interconnection

DDR
memory
controller

Custom IP
block

Video
generator

PCIe
bridge

TUT – ip.hwp.cpu – mBlaze – 1.0

TUT – ip.hwp.communication – hibi_segment_small – 3.0

TUT – ip.hwp.cpu – nios_ii – 1.0

TUT – ip.hwp.storage – a2_ddr2_dimm_1GB – 2.0

Micron – chip.ddr2 – MT41J64M16LA-15E – 1.0

TUT – ip.hwp.accelerator – video_gen – 1.0

HW platform in detail

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 44

NIOS processor

DP-RAM

On-chip RAM

DDR2 off-chip
memory

Video gen

Altera FPGA board

PC board/chips

Nios subsystem
SDRAM off-

chip memory

PCIe PHY chip

Altera FPGA chip

Xilinx FPGA board/chips

microBlaze
subsystem

uBlaze processor

HIBI wrapper

HIBI_PE_DMA
controller

HIBI wrapper

Altera PCIe
controller

PCIe2HIBI
bridge

Altera DDR2
controller

HIBI_MEM_
DMA

HIBI network

HIBI wrapper HIBI wrapper

SW platform, Application SW

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 45

HIBI network

HIBI wrapper

NIOS processor

HIBI_PE_DMA
controller

DP-RAM

HPD DMA driver

On-chip RAM

Altera PCIe
controller

HIBI wrapper

PCIe2HIBI
bridge

PCIe drv

Altera DDR2
controller

DDR2 off-chip
memory

HIBI wrapper

HIBI_MEM_
DMA

Linux OS

HIBI wrapper

Video gen

Altera FPGA board

PC board/chips

Nios subsystem
SDRAM off-

chip memory

PCIe PHY chip

Altera FPGA chip

Xilinx FPGA board/chips

microBlaze
subsystem

uBlaze processor

ETH stack

ETH drv

uC OS-II OS

pic_man.c

Img_
display.c

video_gen.c

VLNV

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 46

HIBI network

HIBI wrapper

NIOS processor

HIBI_PE_DMA
controller

DP-RAM

HPD DMA driver

On-chip RAM

Altera PCIe
controller

HIBI wrapper

PCIe2HIBI
bridge

PCIe drv

Altera DDR2
controller

DDR2 off-chip
memory

HIBI wrapper

HIBI_MEM_
DMA

Linux OS

HIBI wrapper

Video gen

Altera FPGA board

PC board/chips

Nios subsystem
SDRAM off-

chip memory

PCIe PHY chip

Altera FPGA chip

Xilinx FPGA board/chips

microBlaze
subsystem

uBlaze processor

ETH stack

ETH drv

uC OS-II OS

pic_man.c

Img_
display.c

video_gen.c

TUT – ip.application – pic_man – 1.0

TUT – ip.application – img_display – 1.0

TUT – ip.swp.stack– nios_hibi_ucos – 1.0

TUT – ip.swp.driver – hibi_pe_dma – 1.0

TUT – ip.swp.os – ucosii – 1.0

TUT – ip.swp.stack – linux – 1.0

VLNV and directory structure

IP-XACT object are only referenced by
VLNVs, not directory paths or file names !!!
Tools like Kactus2 explores the disk, finds

xml-files and builds a library model for user

Design hierarchy does not depend on
directory hierarchy

We make a recommendation that directory
structure should follow VLNV
Kactus2 proposes directories based on

VLNVs

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 47

Example IP-library
Vendor and Library

reflected to folder naming
Physical product hierarchy

1. Product
2. Board
3. Chip
4. SoC
5. IP

Global for
abstract/universal IPs

System for SW/HW
mappings

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 48

Example

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 49

VLNV is stored here

Source VHDL codes

Testbench

Simulation files

Documents

V: TUT
L: ip.hwp.accelerator
N: video_gen
V: 1.0

Bad example

This works fine from VLNV point of
view, but is messy on disk (and cvs)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 50

Kactus2 Workflow – Everything from
Scratch

 Create new bus, API and COM definitions
 Create new HW components
 Create new HW design
 Create memory map definitions
 Create configurations for HW design if needed
 Create new SW components
 Create new SW designs if needed
 Map SW components to HW components if needed (permanent mapping for all

HW instances)
 Create system design (SW architecture)
 Map SW architecture to HW design (compeled system design)
 Modifications to any parts: drag-drop replacements and/or drafting + save as
 Generate HW (top VHDL, Altera Quartus project file, Modelsim simulation files)
 Generate SW (headers for HAL, makefiles, Eclipse project files)
 Loop back: add draft components in middle of old designs to play with

modifications!
 Optional: create designs with completely drafted components to start creating

a library for the first time, or by creating initial product blueprints
2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 51

Example: Porting between PC,
HW, SW
Application: simple H.263

video encoder

Use cases

1. Run everything on PC

2. Run the DCT on HW
accelerator on FPGA and
the rest on PC

3. Run the DCT on Nios-
processor and the rest on
PC

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Altera DE2

DCT (HW block)

Eth Nios CPU

PC

Eth

x86

Altera DE2

DCT (HW block)

Eth Nios CPU

PC

Eth

x86

Altera DE2

DCT (HW block)

Eth Nios CPU

PC

Eth

x86

Video encoder application

Main.c DCT

52

The Application in Kactus2

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Hardware abstraction
(API)

SW abstraction (API)

Communication
abstraction (COM)

HW platform

SW platform

Application SW

Hardware interconnections
53

HW Platform (top level)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Hardware abstraction
(API)

SW abstraction (API)

Communication abstraction
(COM)

HW platform

SW platform

Application SW

Hardware interconnections

54

System Design: mapping to PC

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

SW abstraction (API)

SW platform

HW instance
(from flattened

HW design)

SW component
permanently mapped
to HW component in

library

Movable SW
component

55

DCT moved from PC to NIOS by
drag-dropping

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 56

DCT moved from SW to HW
implementation (alt+drag-drop)

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 57

Switch from SW to HW
implementation

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

HW instance with
COM interface (from
flattened HW design)

SW component
(application with
COM interfaces)

ALT+
drag-
drop

58

Encoder application SW component

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 59

COM and API definitions

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Local handle of the
MCAPI endpoint in
source C code

60

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Hardware abstraction
(API)

SW abstraction (API)

Communication abstraction
(COM)

HW platform

SW platform

Application SW
 List of API functions, data types, parameters,

return value types, COM transfer types
 API definitions are used to

 validate API between SW components
 validate source code against API definition
 code writing assitance

IP-XACT Extension: API definition

61

main.c in assisting code editor

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems 62

Graphical model vs. code

2013-02-08 (c) Tampere University of Technology Department of Pervasive Systems

Code assistant suggest to use only valid endpoints

63

