Updated March 23, 2012

Antti Kamppi, Joni-Matti Maatta, Lauri
Matilainen, Erno Salminen, Timo D.
Hamalainen

Introduction to IP-XACT with
Kactus2 + extensions

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.20127TDH S peopartment of Computer Systems

Outline

B Motivation

B Standard IP-XACT concepts and Kactus2 examples
® |P-XACT design process and metadata objects
® |P-XACT connections
® Design hierarchy
® Addressing
® Design configurations
B Introduction to Kactus2 extensions for SW, HW/SW mappings
and communication
B Kactus2 IP-XACT extensions and examples

® Summary of standard and extended IP-XACT objects and elements
inside objects

® Communication interface and definition
® SW component and design
® System component and design

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Metadata based design
Motivation

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

The Challenges

B Design of IP (HW, SW) for reusability and portability

® Reuse is not the primary constraint due to tight project deadlines
and/or performance

® Too big overhead in time and effort to make it reusable

B Errors in design data access and transfers

® Missing, outdated, informal documentation: Understanding the IP
takes much time between people

® The same information is typed in several times
® Lots of manual inspections for correctness

® Much time to search for correct versions, files and file
dependencies

B Platform and component dependency
® Locking into vendor, IP, tool, custom tool format

® Problems in component availability trigger laborious re-design
without any other need

B Special expertise required
® Much more SW engineers available than HW/FPGA engineers

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

ITRS roadmap 2011-2026

- Y Al 2 Vel _ - 3
Table SYSD?2 SOC Consumer Driver Desi
Years 2011 | 2012 [2013 | 2014 | 2015 | 2016 | 2017 | 2018
SoC-CP Total Logic Size 100 | 132 | 179 | 232 | 296 | 377 | 470 | 585
Required % of reused design 54% 58% 62% 66% 70% 74% 78% 82%
Required Productivity for new
designs (Normalized to 2011) 1.00 |{122 | 160 | 202 | 250 | 3.08 | 3.72 | 448
Required Productivity for reused
designs (Normalizedto 100 | 122 | 160 | 202 | 250 | 308 | 372 | 448
productivity for new designs at
2011)
ign Productivity Trends
2019 | 2020 [2021 | 2022 | 2023 | 2024 | 2025 | 2026
745 | 9.70 | 11.65 | 1550 | 19.56 | 24.40 | 31.23 | 38.10
86% | 90% | 92% || 94% || 95% | 96% | 97% | 98%
INTERNATIONAL
551 | 6.93 | 8.17 || 10.67 || 13.34 | 16.48 | 20.89 | 16.48 1 ECHNOLOGY ROADMA®
SEMICONDUCTORS
2011 EDITION
551 | 693 | 817 | 1067 | 13.34 | 16.48 | 20.89 | 25.24
SYSTEM DRIVERS

lampere university o1 1ecnnoiogy (L) £3.U3.2U1Z 1UH

53

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

The Solutions

B Make designing for reuse fun
® Not an extra effort but elementary part of the design approach
® Do reusability at once, not as a separate part
® Easy to follow design flow & tools, also for SW engineers

B Use metadata
® Replace informal documentation by machine readable metadata
® Vendor, tool, abstraction independency

B Open formats and tools

® Advanced tools are too expensive for SMEs, but an SME can invest
its share of time to contribute open tools

B Incremental adoption of metadata

® Any new method should be gradually deployed without disturbing
existing design flow

® Often too expensive modify all legacy IP, so allow both new and
old exist at the same time

® Metadata does not require any new IP content creation tools

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

IP-XACT

HmIP-XACT 1.5
approved as
standard in 2009

B Defines metadata
format (XML) for
describing IPs,
designs,
configurations,
tools and
automation
scripts

Tampere University of Technology (C) 23.03.2012 TDH

& IEEE

IEEE Standard for IP-XACT,
Standard Structure for Packaging,
Integrating, and Reusing IP within
Tool Flows

IEEE Computer Society
and the
IEEE Standards Association Corporate Advisory Group

Sponsore d by the
Design Automation Standards Committee

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

IP-XACT Goals & Benefits Simplified

B”The model”: Vendor,
implementation language,

abstraction level and tool .
independent description of IP- IP-XACT ¢¢

blocks and systems < IEEE

HStandardized integration and
configuration flow independent of
vendors

B Standard tool interfaces

B Metadata is “machine readable”
information about the IP itself

® “Electronic databook”

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.20127TDH S peopartment of Computer Systems

Kactus2 in brief

BPurpose: For schetching, packing,
integrating and generating both HW
and SW for embedded products at
several hierarchy levels

BMGoal: Easiest to use metadata based
tool

BObjective: Standard compliant
® |P-XACT/IEEE1685 + extensions

L])
B Details: see http://funbase.cs.tut.fi
[] p. [] [] []
. L =y TAMPERE UNIVERSITY OF TECHNOLOGY
eeeeeeeeeeeeeeeeeeeeeeeeeeeee (C) 23.03.2012 TDH Department of Computer Systems

Meta- |
roduct
data specification

and design —

Wrt. tools
traditional
design o acrxm

metadata

ﬂOW based
management 7
of design
information

Implementation
and production =
tools

System level tools
UML, SysML, SystemcC,...

IP, comp, board, spec, ...
design tools
VHDL, C/C++, doc, xls, ...

IP-XACT &

Libraries

IP-XACT

Tampere University of Technology (C) 23.03.2012 TDH

Product creation tools
HDL synth, SW build

!; 2

S

.(--------

Metadata i Typical
based i design
design 1 flow
flow i

v |

» TAMPERE UNIVERSITY OF TECHNOLOGY

Deﬁértment of Computer Systems

IP-XACT / IEEE1685
IP-XACT metadata objects

. L - TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.20127TDH S peopartment of Computer Systems

IP-XACT-based SoC design

B Inputis IP-XACT component
® The sources are encapsulated and separated from the IP XML description
® E.g. HDL source code is embedded via links to the source file in XML file
B |P-blocks are assembled together in a IP-XACT design
® Structural, tool and vendor independent description of the system
® |P-XACT design tools handle its objects, not IP source files
® Compare: Mentor Graphics HDL designer is a visual VHDL design tool

B Generators are specific tools that configure or generate required
components

® |P-blocks and the design itself may have generic parameters, which are
configured using generators that are typically scripts

B Output is IP-XACT Design
® XML description of the complete system

® The final configured IP-XACT design can be seen as “instructions” how to
create the real system

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Design tasks

IP creation (HW/SW

1. Packetize l

Library managemnt.

2. Assemble 3. Specify

and configure

\ 4

hew

Design / Integration

|

4. Generate
executables

Product creation

Tampere University of Technology (C) 23.03.2012 TDH

IP-XACT-based SoC Design

Artifacts

os*"
"
.
.
.

IP-block
Metadata XML

\ 4
Design
Metadata XML

Tool
Metadata XML

*
llll

v| EDA

o

Process
Metadata XML

HW, SW
Executabl

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

IP-XACT objects

IP-XACT design environment: the

B |[P-XACT Objects are XML tool(s)
metadata files representing SoC
components, structure, and Design configuration

configurations
® top-level XML schema definitions

B |P-XACT design environment Component
handles these objects

B Each object have unique ID:
"VLNV”

® Vendor, Library, Name, Version
B Objects refer to each other,

Design

Bus definition

Abstraction definition

forming spanning trees of the Abstractor
objects

B |P-XACT defines the structure of Generator chain
SoC, not the actual functionality or
purpose

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

IP-XACT objects

1. A component description defines an IP or interconnect
structure.

2. A bus definition description defines the type attributes
of a bus.

3. An abstraction definition description defines the
representation attributes of a bus.

4. A design description defines the configuration of and
interconnection between components.

5. A design configuration description defines additional
configuration information for a generator chain or
design description.

6. An abstractor description defines an adaptor between
interfaces of two different abstractions.

7. A generator chain description defines the grouping and
ordering of generators.

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Department of Computer Systems

VLNV header

B Each IP-XACT object is identified by VLNV (Vendor Library
Name Version)

B VLNV is used and only used to refer between IP-XACT objects

B VLNV is in the header of each XML file
® Contents is not specified in standard

B VLNV must be unique for each IP-XACT object

® E.g. IP-XACT design and component objects must have different
VLNVs, since the object type is not counted when making
references

® Tools may add validation of legal references between IP-XACT
objects (e.g. a design can not refer to bus definition)

IP-XACT design

<spirit:vendor>TUT.course.TKT3541</spirit:vendor>
<spirit:library>product</spirit:library>
<spirit:name>speden_spelit</spirit:name>
<spirit:version>1.0</spirit:version>

— Y OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH ‘z Department of Computer Systems

IP-XACT objects on disk

used tools)

library paths, only by VLNVs

XML-files

B Metadata is in practice XML-files on disk or database (depending on
B |IP-XACT metadata objects do not refer to each other by file names or

Thus, IP-XACT does not specify the location on disk or name of the

® Can be together with the related files, in a single global folder etc.

an IP-XACT library model
Example:

User is not expected to modify and manage the XML-files
Tools explore the disk/database to find the metadata files and to build

C:/.../my_nice_hw_ip/

./Jdocuments

Jip_xact/my_hw_ip.comp.1.0.xml <

IP-XACT metadata
~ file(s)

Files related to the
IP-block

./vhdl_sources |
./simulation %
./whatever _

Tampere University of Technology (C) 23.03.2012 TDH

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Example: IP-XACT object library

B The libraries will sooner or later blow out with tens
of housands of files and IP-XACT objects

B Tools must be used to manage the library

IP-XACT Library

Firmness

Library display filtering
based on attributes and

IP-XACT object types
-

=

Template [¥] Mutable Parameterizable [¥] Fixed

Hierarchy Plain IP-%act

Library components

- TUT:ip.hwp.storage
hibi_mem_dma:2.0

2:2 TUT:ip.swp.api
TUT:ip. hwp.storage
ded_sdram_tester:1.0

" TUT:ip.hwp.storage
ded_sdram:1.0

4 Sk TUT:ip.hwp.storage
alt_ddrZ_a2.busdef:1.0

S TUT:ip.hwp.storage
alt_ddr2_aZ.absdef:1.0

Implementation
Hw sw System
Type
Component Bus/APT [Advanced
Product Hierarchy
Global Product Board
Chip SoC i2
a
Vendor Library Mame Version
TUT - - - -
Filtering/Search

Tampere University of T based on VI—NV

»»»»»

IP-XACT object library
shown by VLNV references
hierarchy starting from
topmost level

hibi_mem_dma_endpoints:1.0

£

Library shown by IP-
XACT object types

Plain IP-Xact

Library components

» component
» busDefinition
» abstractionDefinition

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Example: IP-XACT libraries

BTools create the object library based on XML-
files found

B Kactus2 user must give root folder(s) to start

SCanning
y
(' o EXAMPLE =0 o)
oy Library locations {check the default directory)
;_ﬂ ﬁ; C:\Drophox\Kactus2 development\funbase_ip_library E3
G.;r;;r.al N— E]
Kactus2 suggests A
|I ﬁ locations of new IP-XACT Only IP-XACT objects found
Library objects based on the downwards from the given
- default library root directories are shown on
the IP-XACT library

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

IP-XACT Component

IP-XACT component is a general placeholder describing all
IP block types like processors, memories, accelerators and
building blocks for buses and various interfaces.

A component contains independent elements that can be
referenced between each other within the component.

File sets and file set groups are folder and file link
collections
® include information about used tools, description languages
and instructions how to handle the files

Model parameters are used to configure
tools/implementation specified in views

General parameters can be any configurable values or
symbols related to this component

Addressing includes memory maps and address spaces
define addressable locations seen into and out from the
component

Views represent different purposes of the component

Ports and bus interfaces are used to connect component
to other components or special test structures

Other information include e.g. signal constraints, routing
information inside component, whether this component is
a CPU, etc.

Tampere University of Technology (C) 23.03.2012 TDH

Component

VLNV, general description

File sets, build options

Model parameters

General parameters

Address space

Memory map

Views

Ports

Bus interfaces

Channels

CPUs

Misc/other elements

A

L

AN

IP-XACT object

XACT object

£

Element inside IP-

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Computer Systems

References (IP-XACT component)

B |P-XACT elements refer

1 to other IP-XACT Example (not all refs. shown)

objects by VLNV refs. IP-XACT Component
2- tO eaCh Other inSide a VLNV’ general description file F||e
component by nhame name : —— >
refs. > File sets, build options
3. tofiles and folders by Model parameters
file refs General parameters
B Note: User or tools
must make sure Address space €
uniqueness and Memory map pa
coherence of all :
references Views
name
|-> Ports
name
IP-XACT g VLNV Bus interfaces
Design
Channels
IP-XACT Bus | VLNV CPUS
. s €
definition .
Misc/other elements

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

IP-XACT Design

B IP-XACT design is like a traditional schematic of
components

B Describes a list of component instances and
connections between each other

Library of IP-XACT components

Component A e Design
) \:\\~ ~ -] _| Component A Compenent’s
ComponentB | _ _ - \ Instance 1 Instance 1
D PN |
Component C s ~4 _| Component A
) ‘Instance 2

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Department of Computer Systems

IP-XACT / IEEE1685
Integration and connections

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.20127TDH S peopartment of Computer Systems

About connections

Component’s external interfaces are ports or bus interfaces.

Connections between ports are called ad-hoc connections.

Connections between bus interfaces are called interconnections.

Bus is a general term for all kinds of interconnection topologies
® simple buses, crossbars, network on chip

Component port is an external connection from the component, also called physical
port.

® |t can be wire for implementations or abstract for modeling purposes.

® A portis a single signal (one wire) or a group of signals (vector, set of wires).

® Port direction is mandatory (in, out, inout, phantom).

® |P-XACT does not support tri-state or multiple strength values.
B Component bus interface is a grouping of ports associated to an IP-XACT bus

definition

B Same ports can be used several times for different bus interfaces and ad-hoc
connections.

Interconnection

P s |
: businterface businterface i
! —-ooooooooooood BTt
Component | Physical : I' Component
' ports businterface \ Physical :
: """"""" ‘ ' ports :
Lo l A T l

Department of Computer Systems

Ad hoc connection
. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Component bus interfaces

Background: typical SoC buses have strict master-slave roles that are called bus

interface modes in IP-XACT

® Master can initiate transfers, slave can only respond

Bus interfaces are direct or mirrored

® Mirrored interface has the same signals, but directions are reversed
® Asignal thatis an input on a direct is an output in the mirror interface

IP-XACT default is direct-mirrored connections

Mirrored-mirrored is not allowed

Direct connection is allowed with some restrictions

Bus interface

—
Component | Master

1

oo
Component 1 Master

1

oo
Component 1 System

1

| Mirrored
Component

L Master

Tampere University of Technology (C) 23.03.2012 TDH

/

Mirrored 4 Component
_Master |
SIS

Slave | Component
1
I —

Mirrored 1 Component
agslStEm
i

Mirrored 1 Component
olave |

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Example: PO rts IP-XACT component

instance in a design

B A port can be a vector (bus) or a
single wire with types and default
values defined

B Ad-hoc connections are NOT
recommended, since connection
validation is poorer

Port for

interface ad-hoc

B Use bus interface also for single-
wire ports

If checked, this port is visible for
ad-hoc connections in all

instances of this component
EXAMPLE
General 4 | N Left Right Type Default T
File sets Mame Direction Width (higher) (ower) Type deﬁYnI:ilﬁnn value Description Ad-hoc
Model parameters - _ bouwd | bound
Parameters 1 iclk fin 1 0 U std_logic IEEE.std_logic_1164.all
» Address spaces 2 hibi_av_in_to_the_hpd in 1]] std_logic IEEE.std_logic_1164.all |
© Views 3 hibi_av_cut_from_the_hpd out 1 0 0 std_logic IEEE.std_logic_1164.all &
4 ::;t;terfaces 8 hibi_empty_in_to_the_hpd in 1 0 0 std_logic IEEE.std_logic_1164.all [l
dk in 9 hibi_full_in_to_the_hpd in 1 0 0 std_logic [EEE.std_logic_1164.all [l
hibi_p 10 hibi_re_out_from_the_hpd out 1 0 0 std_logic [EEE.std_logic_1164.all =
ch rst.n s 11 hibi_we_out_from_the_hpd out 1 0 i std_logic IEEE.std_logic_1164.all [
A nne
. Cpus 12 rstn in 1 0 0 std_logic IEEE.std_logic_1164.all [l
nthar clack drvorc 4 hibi comm in to the hpd in 5 4 1] std logic vector IEEE.std loaic 1164.all =

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Component

Mapping between
physical and
logical signals

Logical signals

About connection abstraction

B |P-XACT uses abstraction to connect two components together
B Bus definition and abstraction definition define logical signals for a bus
B Ports (physical signals) are mapped to logical in components bus interface

Grouping of ports for a bus

\
Bus and abst. | | Component
definition businterface Ports
MEM_ADDR local _address

Component

mem_addr_out

B When the design is implemented in RTL (VHDL), the final result is this:

Component

Tampere University of Technology (C) 23.03.2012 TDH

£

local_address

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

IP-XACT Bus and Abstraction
definitions

B [IP-XACT bus definition specifies general bus properties like
® Maximum number of masters and slaves allowed
® Bus is addressable (it is possible to see memory locations through it)
® What kind of connections are allowed (mirrored-direct, direct-direct)
m [IP-XACT Abstraction definition is optional refinement object always used together with
bus definition. It defines logical bus signals and constraints related to them, like
® bus width
® direction of logical signals
® presence of signal with respect to some condition (some with master, some with slave)

Several abstraction definitions may exist for one bus definition

B Port map is part of component’s bus interface defining the mapping between physical
and logical signals Mapping
fm==mm===mmmmmmmm——oooe- 1 | | between —
: busInterface i logical and busDefinition
i Z//:/’I physical signals :
] portMap ‘i- [T~ ~, abstractionDefinition
Component l::,’::::::::::::::::::::::::: S o —7
i \ model i SN == - \
P i .
P port i [| Physical signals Lpglcal bus
: i signals are
S defined here

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Example: BusDef and AbsDef

B Kactus2 groups together Bus and Abstraction definition, but abstraction
definition is not compulsory

B Abstraction definition includes qualifiers (address, data, clock, reset,
any) and presence (required, optional, illegal)

B Complex signal conditions can be created
® E.g. some signal is not allowed if the interface is master

View System
IP-XACT Library e alt ddr2_a2.busdef (1.0) [Bus]* [£] | T
v (General (Bus Definition) A-‘ B U S d efi n ItIO n
Viendor Library MName \iersion Used only between reqular and bus components [| Does notindude addressing Max masters: Max slaves: J
TuT > wp.storage - - - \

7
Signals (Abstraction Definition)

Hierarchy Plain IP-Xact ’Add new signal] ’Add new signal opﬁons] ’ Import csv] [Export csv

Library components 0 Name Qualifier Width Default Maode Direction Presence Driver Comment
4 |S& TUTip.hwp.storage 1 ‘MEM_ADDR_TD_ALT_DDRZ address 25 master out optional none
alt_ddr2_a2 busdef:1.0 i
2 MEM_BE_TO_ALT_DDR2 any 32 master out optional none
= ;f;';&’_":;:ﬁi;ﬁiu = 3 MEM_BURST_BEGIN_TO_ALT DDR2 any 1 master out optional naone
h |« e e e e e
Several abstraction definitions ma :
y Abstraction

exist for a single bus definitions definition

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Example: Bus interface port map

bus interface

4

hibi_mem_dma_1 ﬁ

rst n

hibi_p SERS

ck_inlBy - - -

alt_ddr2_p

a2_ddr2_dimm_1GB_1
alt_ddr2_p phy_dk_out

rst_n

dk_in

soft_rst_n

Bus interface

Tampere University of Technology (C) 23.03.2012 TDH

B Kactus2 interface editor displays port map specific to a

Interface Editor u

e Bus definition
[TUT |[ip.hwp.interface | ddr2_a2.busdef| 1.0] VLNV
Abstraction type VLMV .
- Abstraction
[TUT [[ip.hwp.interface | ddr2_a2.absdef | 1.0 oL
definition
Interface name
VLNV
ddrZ_p
Interface mode
master
D ipti
ssTRen Component
Bus signals ports
AN [\
Port map \/ \
\J v n

Lagical name Physical name

C5_MW_TO_DDRZ mem_cs_n[0..0]
Cas N_TO _DDR2 mem_cas_n[0..0]
0DQ M _TO_DDR2 mem_dm[7..0]

MO T AMD FROKA NINR2 rern dlaelT 1

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Example: Port Map

-~
Logical name Physical name

MEM_ADDR_TO_ALT_DDR2[24..0] | local_address[24.0] —drst n le
: : T ddr2_ g

Legical name Physical name

MEM_ADDR_TO_ALT_DDR2[24..0] mem_addr_out[24..0]

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Port map with offset

M |P-XACT allows mapping with offset between physical and logical signals
M Typical uses
® Components have different physical bus widths
® Master and slave components have different mappings but same bus connects both

B Extreme example: one very big Abstraction definition for all possible signals.
Components map only the signals they need

Width
< >
Losical sienals Abstraction ‘Left Right‘ Default
gical sig Definition | L1 mapping
n 210 between
S —— Z logical and
i businterface X | Offset physical signals
Physical signals {| portmap i ‘Left nght
i""éﬁéfr?{ér};'c'e'?""i Offset Physical signals
A i i Left nght‘ are mapped
Physical signals i portMap i ‘ with offset
"""""""""" 210

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Example: port map with offset

, Abstraction Left Right
Logical: MEM_ADDR b | g
- — | Definition
Physical: local _address portMap || Left Right
24 0
a2_ddr2_dimm_1GE {2.0) [Component] [£] ‘ M a p pl ng |S d one
General - | General I Interface mode | Port maps | Parameters | here by SeIeCtI ng’

- File sets i -
Model parameters E] ([1to 1l J [1 to many] [4 Clean up] [i Connect l) SOFtIng and drag
Parameters Logical ports /\ FPhysical ports < d ropping across t h e
Address spaces / \ aw:_full_rate_clk - IIStS

© Views aux_half_rate_clk i
Ports Map tO ma ny at dll_reference_clk =

4 Bus interfaces . dqs_delay_ctrl_export Already mapped

alt_ddr2_p the same time global reset L
dk in T e drop down to
ddr2_p ocal_refresh_ac
ohy. dh_out mem _addr appear here. Delete
rst_n mem_ba)
soft_rst_n mem_cas_n = remove mapping
Channels mem_cke
Cpus > =) N7
> = ~
y Logical Logical Logical Physical Physical Physical il
EXAMPLE left right narme name left right
D e 0 MEM_WR_REQ_TO_ALT_DDR2 local_write req 0 0 :
0 0 MEM_RD_REQ_TO_ALT DDR2 local_read_req 0 0 -
24 0 MEM_ADDR_TO_ALT_DDR2 local_address 2 0 i
0 0 MEM_READY_FROM_ALT DDR2 local_ready 0 0
L i i MAFRA RMATA WAI TN FROMA 41T NNRY lnaral rdata wvalid n n)

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

IP-XACT / IEEE1685
Design Hierarchy

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Design hierarchy

B |[P-XACT design never refer to other designs

B A design refers to components that are instantiated into
design

B The design itself can be wrapped inside a top level component
in order to use it as a subdesign

B References always go downwards in hierarchy
® |P-XACT component can refer to a lower hierarchy IP-XACT design

® |P-XACT design cannot refer to any top level component

IP-XACT Component (top) <U Component is hierarchical
if it includes a reference to

a design

IP-XACT Design
IP-XACT Component

/.
/|

~ . .
T Design always includes

IP-XACT Component component instances

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Example: Hierarchy

IP-XACT Component: arria_Il_gx_demo_soc

|— IP-XACT Design: arria_Ill_gx_demo_soc

|— IP-XACT Component (instance): hibi_segment_small 1

IP-XACT Component arria .o deme sul T Indicates this is a
- Qldk_in ddr2 pl>- | | hierarchical
IP-XACT Design _— Jpcie_4x_p rst_n I> component
\ Ersnf't_rst_n

hmponents

(8]

This column
includes
hierarchical

connections SESREY B

= 1alt_ddr2_p

a2 ddr?_dimm_1GB_1
phy_dk_o

Tampere University of Technology (C) 23.03.2012 TDH

$ Department of C

TAMPERE UNIVERSITY OF TECHNOLOGY
omputer Systems

Create bus hierarchy from lower to
upper level

1)

2)

3)

EXAMPIﬂ

design
Kactus2 Kactus2 Create new
component 10 . .
column column design with
”10” to
com
P + -C__l upper level
com
P : Kactus2 creates
design corresponding
Kactus2 Kactus2 component with
component 0 hierarchical bus
column column _
interface
comp —
} - P>

comp (hierarchical)

>

Tampere University of Technology (C) 23.03.2012 TDH

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Create bus hierarchy from top to

lower level

1)

2)

EXAMPLE

Create a new
component
with a bus

interface

Create new design for the
component: Kactus2 adds

empty design from the top

bus interfaces to the

level component

comp
comp
design
Kactus2 Kactus2
component 10
column column
comp
design
Kactus2 Kactus2
component 10
column column

Hierarchy is
created

Do design and
connect to 10:
g

comp |

Tampere University of Technology (C) 23.03.2012 TDH

£

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

A detailed hierarchy example

comp pcie_4x_if.busdef
design
comp
design
comp
A
<z N
= \
<z AN
z N\
7
businterface: pcie_4x_p businterface: pcie_4x_if businterface: pcie_4x
busType: pcie_4x.busdef busType: pcie_4x.busdef busType: pcie_4x.busdef
portMap portMap portMap
logicalPort: RST_N_FROM_PCIE logicalPort: RST_N_FROM_PCIE logicalPort: RST_N_FROM_PCIE
physicalPort: pcie_rst_n physicalPort: pcie_rst_n_phy physicalPort: RST_N_FROM_PCIE_phy
ports ports ports
bus intfce hier con bus intfce hier con bus intfce
bus bus bus

pcie_rst_n \‘

pcie_rst_n_phy \‘

J pcie_4x

pcie_4x_p

” RST_N_FROM_PCIE_phy “

]

pcie_4x_if

reference direction ‘

Tampere University of Technology (C) 23.03.2012 TDH

pcie_4x L :

J pcie_4x

pcie_4x

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

IP-XACT / IEEE1685

Addressing and bus
components

EEEEEEEEEEEEEEEEEEEEEEEEEEEEE
ity of Technology (C) 23.03.2022TDH Wl pepartment of Computer Systems

IP-XACT addressing

B Address space is defined for a component’s master interface. It is
programmer’s view looking out from the master

® These addressess can be remote (in other component) or local (in this

com

ponent)

® Generators can create this based on connected memory maps

B Memory map is defined for slave interface to specify registers,
memory and 10 accessible through this interface

® These addresses are physically located in this component

B Note: Address space and memory map can exist without any bus
interfaces

Component
A

Address
space =
X+Y
(for
example)

[_—
Bus interface r

Tampere University of Technology (C) 23.03.2012 TDH

Component Component
B C
Memory Memory
map X map Y
e
Slave [
1
e
Slave [
1

2

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

IP-XACT addressing details

Same address space can be associated to several master interfaces in a component
Several address spaces can exist
Address space may contain several segments

Address space purpose can be defined like “executable program image”
® Association is done by address space reference that also tells the base address.

Memory map address blocks define basic information and usage like “ROM” and
“non-volatile”.

® Advanced definitions include banks and address handling especially for bridge

components.
Component Component_ - === -4
v-" Ref ~~. ,R’ - Memory map
/

Address Space Address space ! € Address
*Range reference v 1 block
*Width emory map *Base

Base address
*Address unit - refe'rfnce address
Segment \ Ref Ref *Range
L / *Width

*Offset \ | '

address SR e — *Address unit

*Range i Master —O— Slave i *Usage

1 1

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Address definitions

B Address unit bits tells the number of data bits in each
increment in address (default is 8 bits)

B Range specifies the range as the number of addressable units

B Width specifies the row width. It tells the maximum single
transfer size by a bus interface

B rows x width == addressUnitBits x range == bits

width-1 (bits) 0 AUB=8, Range = 16 => 128 bits in the block
h— , . width |8 16 32
21 1 1 0

i i

S — ...

I I (addressUnitBits x 4 rows

I I

| | rangE)/ 8 rows

: : width

: : ‘ BN (Single addressable unit

. . v 16 rows I |Max single transfer unit

<>

address unlts (blts) $ TAMPERE UNIVERSITY OF TECHNOLOGY

Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Example: Address space

Max single transfer unit (in a bus interface)
\
[

Single addressable unit !

—Mame and description
Mame: I MiosData
Display Mame: I
Descrphen: Segment within
address block
~General Warning: “data”
Addressable unit size I a ﬂ an d ”Sta C k”
Width of address block |32 :I Segments Overla p
Range of address block |4G
—Segments
Marme Offset 2 Range Descripkion
code 1] 51ZM
heap 3G 1G
data S12M 1G A pc EXAMPLE

Department of Computer Systems

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Component includes

Bus components channel(s) or bridge

connecting multiple
Bus interfaces

B On-chip bus or other internally
network is implemented _ 4
with IP-XACT component Comeren: -
that businterface i i businterface
® include several bus s I e e T B
interfaces R I
i businterface ! ! businterface !
® Bus interfaces are e T e e

internally connected as
channels or bridges

W Kactus2 uses separation ===

to regular and bus

components thatcanbe — ——
placed on separate s -
columns for better

readability

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Channel

B Channel is often
used to implement

a single bus Component _ _ _ _ _ Component
Only mirrored bus | Siag § Channel v e I Save
interfaces are ____Lqif?_g__ri (nternal bo...Slave____ (Direct interface)
Chanmel hasonly | P09 | oty [| e
Slave i i Master | (Direct interface)
one address space [-T-TTTTTT e —— e] e
that is same for all
mirrored master Componenﬁ _______ !
interfaces. " Mirrored | Sl [Mirrored |
Mirrored slaves can __System__ i i Slave |
have subset address t-——————__. = S—
spaces. Mirrored | Channel i Mirrored 1§
Slave i | Master |
A component can TGO T - @000]
have several
channels.

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Example: Channel

M Bus interfaces can be associated to one or more channels
B Channels do not specify any explicit signal-by-signal

mapping between bus interfaces, but just information
which ones are logically connected

This component has
only one channel
that connects shown
bus interfaces

L

T

General
4 File sets
» hdlSources
Model parameters
Parameters
Address spaces
4 Views
rt
Ports
4 Bus interfaces
dk_in
ddr2_ctrl_p
hibi_p1
hibi_p2
rst_n
4 Channels
HIBIchannel
Cpus

Mbrhnn AlaAle Ao

Tampere University of Technology (C) 23.03.2012 TDH

+ Mames and description
E Mame:
Display Mame:

Description:

HIBIchannel

Internal connections inside bus segment

Bus interface references

hibi_pl
hibi_p2
ddr2_ctrl_p

EXAMPLE

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Double-click to see

drop-down list of
available bus
interfaces

Bridge

B Bridge is often used to connect different buses together.
B Bridge defines for each slave its connections to one or more
master interfaces.
® I[nternal wiring is explicitly defined

M Bridge has only direct interfaces, and it can connect to direct
or mirrored interfaces.

Component Component

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Transparent bridge addressing

B In transparent bridge, the address space seen from the master interface (out from
bridge) is seen as such at slave interface.

M |If bridge connects multiple masters to a slave, the slave memory map contains all
master address spaces.

B Note that bridge master address space may not cover all of the available memory of
other component (B). Component A can transparently see B’s space as defined in
bridge’s master address space.

Component Component Component
A B
Address Q: :4; < ﬁ:
space Memory Address Memory
Map Space map
.......... :‘; y N (...... y N annnnnnnndn
Ref | \
I — 1 Ref
I |__ Bridge |
L oo :
I Master Slave b—n Master Slave !
1 1 1 1 1
e I B kit I *

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Opaque bridge addressing

B In Opaque bridge, the address space on bridge’s
master interface is not directly seen from the slave
interface.

B In this case, the bridge makes complex mappings
with offsets and base addresses. See IEEE1685
Annex H for complete presentation.

Component Component Component
A B
A Address
< > Memory ¢:).
Address Map Space Memory
space - CITTTTTr. > CEETTRPTED > map
A (..... > Yy
Ref |
e —— 1 Ref
[1 Bridge |
L o :
I Master Slave b—or Master ! Slave [
1 1 1 1 1
e I B | Sty | I

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

IP-XACT / IEEE1685
Design configuration

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Component View

B A component can have several views Component
that describe
® information about implementation View A
environment .

_) Tools, tool options,
® design hierarchy languages, for this
® associated files view

B Views can be seen as different and/or
purposes of the component Hierarchical reference
® “RTL view” may describe the source to IP-XACT design or
hardware module/entity with its pin design configuration
interface and/or
® “A documentation view” may define _ _
the written specification of this IP Non-hierarchical
P . reference to fileset
® ”Structural view” may refer to an IP-

XACT design for hierarchical designs

B |P-XACT standard allows only one View B
active view for a component when
instantiated in a design

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

IP-XACT Design configuration

B Defines
® Active (current) views for all component instances of the IP-XACT design

® Configuration for interconnections between the same bus types (bus
definition) but with different abstraction definitions. This uses IP-XACT
abstractor objects

® Configurable information for parameters defined in generators in IP-XACT
generator chain object

B A single design configuration applies to a single design, but a design
may have multiple design configurations

Design Design For VHDL
S enerati
Component A Component B Design g ion
Instance 1 Instance 1 j L i For high-level

View RTL Ié T D.ESIgn. simulation
_l-171 | configuration PThisis hi ical
Component A View SIM |e 14+ Active view This is hierarchica

Instance 2 View STRUCT él” | | | = Parameters component”

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Configurations: Basic case 1

B Design configuration selects active views of component
instances in IP-XACT design

B E.g. one for implementation and one for simulation purposes

Component
(top-level)

Design /\ Design
configuration A VLNV reference configuration B

("create VHDL”) (“create SIM”)

J, VLNV + view name reference \l,
Design X Design X

Component A Component B Component A Component B
Instance 1 Instance 1 Instance 1 Instance 1

View RTL || |
View SIM View SIM

View STRUCT

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Configurations: Basic case 2

B Design configuration selects different IP-XACT designs

M E.g. two different implementations for production and
testing

B Note: views can also be configured at the same time

Component
(top-level)
Design /\ Design
configuration A VLNV reference configuration B
("product config”) (“test config”)
J, VLNV + view name reference \l,
Design X Design Y
Component A Component B Component A Component B
Instance 1 a Instance 1 Instance 1 Instance 1
View RTL View RTL View RTL -‘V View RTL
Component C :
View RTL
Instance 1

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Department of Computer Systems

Example: Design configurations

B Kactus2 manages/lists design configurations on right hand panel

B Kactus2 creates IP-XACT component, design and design configuration

objects for user

B User can add more configurations

“mm“d List of configurations

IP-XACT Library

Vendar Library MName ‘iersion
tutorial * s0C - - -
Hierarchy Plain IP-Xact
Library components ~
4 X tutoriaksoc Component
firstsoc:draft
ng: ”
| firstoc
1 tutoriakip.hwp.c

firsteoc (draft) [Design]* @ |

Configuration Details / F X
- Add new Remaove
Components 7 configuration configuration
/
L Current configuration: [sh'uclural v]

hibisegment_1
hibi_port_1 hibi_port_2

=
Instance name

hibisegment_1

tta_ 1

P]

Active view

e

hibisegment:draft

& tuterialip.hwp.cpu

ttaidraft

Hierachical design for component

"firstsoc” on the design
configuration “structural”

configuration

| Component instance’s
active view in ”“structura

III

Objects on disk (note: Kactus2 takes care of XML files, do not edit manually)

! ipswp.driver
& ip.swp.stack
g product
gy soc
g firstsoc
g draft

-~

Mame

2 IP-XACT design

g firstsoc.design.draft.oml

& | firstsoc.designefg.draft.oml

% IP-XACT design configuration

g firstsoc.draftoml

& | firstsoc testing.designcfg.draftxml

Tampere University of Technology (C) 23.03.2012 TDH

] IP-XACT component

ﬁ IP-XACT design configuration #2

=

Example: Creating configurations

Case 1: different Case 2: Case 2:

B Example: A component have one component different || modify the
des_ign and one conf_iguration t_hat views only design design
defines component instance views Y Createrewed _fion 7 A S

® A new configuration may add _ - - N _

N e of Views and/or @ Use currentdesign () Create new design () Copy old design to new configuration
. Configuration name:
® changes to the design structure .
. . Configuration VLMY
® atotally different design e Special Kactus2
N . ndar: ria i

m Note: it is not recommended to modify o extension: e.g. for
hierarchical connections in a design for o (ee oo e parent
some configuration ”E‘m_e’ independent of

® Violates component-design hierarchy Version: draft hierarchy
consistence OPTIOMAL reference to this component's v -]
® |If needed, create a new component top-level implementation view

(copy & give a new name or version) « ok || €3 cancel |

| ‘ Configuration Details 8 X
- Add new Remaove
Buses Components configuration configuration
... /
... Current configuration: |structural v]
hibisegment_1 tta_1 ' Instance name Active view
hibi_port_1 hibi_part_2 ibi .

--------- : tta_l
.. . tta_z rtl
.......................... th_z . hibiSEgl"ﬂEﬂt_l I'tl

hibi .

. . IAMPFEKE UNIVEKSITY OUF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH v

Department of Computer Systems

Parameters

B Parameters make components configurable

B |[P-XACT objects have parameters that can be used to
configure or hold any information

® name, value, attributes
® Parameter scope is not defined (global/local)
® Parameters can be of any type
B |P-XACT components may have also model parameters
® specific to the implementation of the IP-XACT object
® E.g. VHDL generics
® <name, type, usage, value>
B Values can be omitted or given as the defaults
® Design/instance specific values can override the defaults

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Department of Computer Systems

Example: Model parameter

.defined:in IP-XACT component

B Model parameters are globally defined (not specific to

General a source file)
‘ F"'hed;:::% B User must take care that a model parameter does not
Default file builders affect unintentionally if t”he same name is used in

4 Files several source files (e.g. "input”)
vhd/t_control.vhd
vhd/addr_data_demuz_read.vhd
vhd/addr_data_muzx_write.vhd entlty hlbl Wrapper rl iS
vhd/addr_decoder.vhd . - -
vhd/cfg_init_pkg.vhd generic (
vhd/cfg_mem.vhd .
vhd/double_fifo_demux_wr.vhd - StrUCtural Sett|ngs.
vhd/double_fifo_mux_rd.vhd . H H H H
hd/dyn_arbatd All widths are given in bits
vhd/fifo_demux_wr.vhd addr width g - integer;
vhd/fifo_rmux_rd.vhd - -
vhd/hibi_segment_small.vhd

'l'lILIITIIIUI_DEHIIIEIIL_'I'_I-'I'IILI
vhd/hibi_wrapper_rl.vhd /

General - NaTﬂE Data type / Usage type Value Description
4 File sets - addr_width_g integer nontyped 32

D;h:{d:;iulu;:;iam eters agent_max_.. | INteger nontype 200

Parameters agent_max_... integer nontyped 200 P

Address spaces agent_max_... integer nontyped 200 EXAMPLE
. Views agent_max_... integer nontyped 200 el

Ports agent_max_... integer nontyped 200

- P Aanant nrinri intenear nontyne 1

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Example: Model parameter set
in IP-XACT design

B Model parameters are set in IP-XACT design for
component instances

® If not set, default values are used

1.0) [Component]™ de2_staff (draft) [Design]* £ L Component Instance Details 8 X

n Instance model VLNV

_________________________________ | TU|ip.hwp.communicati hibi_segment_small | 3.0

[Instance name
MName: hibi_segment_small_0
Display Name:

Description:

43 HIBI wrappers with bus wiring

Configurable element values Double-click
‘ to see drop-
o Name Value down list of
+ - <Ihibi_p2 addr_width_g 32 l/ model
.+ -<1hibi_p4 L(/ parameters

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Example: Parameter

B Any parameter-value pair can be used within the IP-XACT

compone Nt
hibi_segment_small (3.0) [Companent]*]
General - Name Value De-;cmunn
> File sets - generic_clk_in_port_name clk_in example how parameters can be used
Model parameters Rectos?
Parameters J l,g EXAMPLE

-

General + Left Right

> File sets Hame Direction Width (higher) (lowver) Type
Model parameters - — s
Parameters _u{ n 1 0 0
Address spaces / 119 TR n 1 0 0

> Views 118 agent_we_in_8 in 1 0 0
Ports 117 agent_we_in_7 in 1 0 0

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Configuration process

Design configuration A for Design X
Component A ("product config”)
File set: a.vhd| :
Model param: bus_x_width Design X Component X for
Views: RTL, SIM Component A Component B dg5|gn X
File set: generated
Instance 1 Instance 1
Component B : : top VHDL
File set: b.vhdl View RTL View RTL (ref to a.vhdl and
Model param: bus_y_width _ . b.vhdl, with the
Views: RTL, SIM Bus_xgvzwdth Bus_y_E\;Nldth generics set)
Components in library > |Instances in Design > Generated
elements/files
B |P-XACT component have properties that are common to all its in top
instances component of
| IP-XACT_design and design configuration hold all instance specific the design
properties

® "Configurable element value”define model parameter value

B Generated files can be stored to the file sets of the top component of
the design

® Not defined in the standard, but follows the hierarchy

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

IP-XACT model parameter
propagation approach

B Basic idea: IP-XACT objects encapsulate their own properties
that should not depend on other objects (for maximum
reusablility)

B [P-XACT makes only downward hierarchy references

® |P-XACT component can refer to a design (lower hierarchy))

® |P-XACT design can not refer to a component (upper hierarchy),
only for a component instance at lower hierarchy design

B |[P-XACT propagates model parameters only for one level
® From design to component instances
® Not from a Component to designs
B Notes: Using fixed values (no parameters at all) are the safest
(debugging), but blows out the number of objects in library
® E.g. individual components for all fixed bus width variations

® Laborous to handle manually, but not a problem for automated
tools

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Department of Computer Systems

Propagation of generic values in

VHDL design

Case A: Generics do not have any dependencies between hierarchy levels: each
component should be edited separately if something changes in top level

Inst_top : top_comp
Generic map (
DSize <= 32,

Inst_5 : sub_comp_5
Generic map (
Dsize <= 32,

Tampere University of

Case B: Generics propagated from top level:
Changes to only top level is required

Inst_2 : sub_comp_2
Generic map (
DataSize <= DSize,

Inst_4 : sub_comp_4
Generic map (
DWidth <= DataSize,

Inst_6 : sub_comp_6
Generic map (
Dsize <= DWidth,

fERSITY OF TECHNOLOGY
f Computer Systems

VHDL generic benefits and
problems

B Easy to make different versions by propagating
generics downwards

M Less files in disk, since only top-level components
are created for each configuration

B From a sample VHDL file it is difficult to tell what
generic values were used and where they are
coming from

B Difficult to debug and track product configurations

B Propagation of VHDL generics can be implemented
in IP-XACT Iin two ways
® Implement tool automation for method A (preferred)

® Mimic VHDL generics propagation in method B
(possible but as error prone as VHDL)

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.20127TDH S peopartment of Computer Systems

IP-XACT model parameter in VHDL
Case A

B Basic mechanism: design has configurable element values (name,
value) that set component model parameters (instance specific)

B |f fixed, no parameters are required [l < ey 2oy
. . Generic map (
u StI”. possﬂgle to use modelParameter, but no dependency from DSize <= 32,
design to its top level component
B Tools can automate the process)

Inst_1:sub_comp_1
Component: top_comp (topmost level) Generic map (

modelParam: DSize = 32 DataSize <= 32,

Design: top_comp
confElementValue: none, or DataSize = 32

Inst 3 :sub_comp_3
Generic map (

Component instance: sub_comp_1 _[_)Width =
modelParam: none, or DataSize, or DataSize=32):
Design: sub_comp_2 Inst_5 : sub_comp_5
confElementValue: none, or DWidth = 32 Generic map (
Dsize <= 32,
Component instance: sub_comp 3 .
modelParam: none, or DWidth, or DWidth = 32

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

1. From
component to
design

This is not
specified in
standard, but
possible: use the
same parameter
names in
components and
designs

2. From design to
lower hierarchy
component

IP-XACT design
define values for
component
instance model
parameters

The standard way:

Tamp

B Propagation of generic values

B Kactus2v. 1.3 VHDL generator
follows this princpiple

IP-XACT model parameter in VHDL
Case B

Component: top_comp (topmost level)
modelParam: DSize = 32 (default)

Inst_top : top_comp
Generic map (
DSize <= 32,

Design: top_comp 1
confElementValue: DataSize = DSize

2/

Component instadce: sub_comp_2
modelParam: DataSize

~.

Design: sub_comp_2 \

confElementValue: DV\;idth = DataSize

Component instance: sub_comp_4
modelParam: Dwidth (= 8 by default)

#yiof Technology (C) 23.03.2012 TDH

£

Inst_2 : sub_comp_2
Generic map (
DataSize <= DSize,

Inst_ 4 :sub_comp_4
Generic map (
DWidth <= DataSize,

Inst_6 : sub_comp_6
Generic map (
Dsize <= DWidth,

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

About versioning

1) File version change in repository

VLN version 1.0 %“-‘7 my_component_v5.1.vhd)

, commit
No change to IP-XACT object

Benefit, but also a
drawback if misused:

propagate change to all

objects VLN_version_1.0 % my_component_v5.1.vhd
l branch

2) Version change "ip-kind-wise” (e.g. branch in repository)
A) Update IP-XACT object

. R my_component_v5.1.b.vhd
No automatic
propagation, but
requires modifying
other IP-XACT objects J l branch

referrlng to original VLN version 1.1 L. » my_component_v5.1.b.vhd
version ”1.0” - -

B) New IP-XACT object
VLN_version_1.0 % ---------- > my_component_v5.1.vhd

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Introduction to Kactus2
extensions for SW, HW/SW
mappings and
communication

. <l TAMPERE UNIVERSITY OF TECHNOLOGY
eeeeeeeeeeeeeeeeeeeeeeeeeeeee (C) 23.03.2012 TDH Department of Computer Systems

The general layer model

HReuse is implemented by strict use of
layers

Communication protocols between
Communication abstraction applications

[Application SW J Platform independent SW code
(may be also OS independent)

SW abstraction (API)

[SW platform (optional)] Application independent SW code
(Operating system etc.)

Hardware abstraction

[HW platform] Physical execution, storage and
communication

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Department of Computer Systems

Kactus2 layer model

HW/SW
Mapping
HW component, SW comp (e.g.
flat or labelled as Communications
hierarchical Application) API
N Communications
/ abstraction API:
SW API (e.g. MCAPI,
-9 between APP
and driver) Structural API: Socket, .
Function
rototypes, ...
. SW comp (e.g. P P
HW interface SW olatf
platiorm SW component,
component)
flat or
— hierarchical

Structural IFC:
Buses, timing diagram,
constraints, ...

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Kactus2 IP-XACT extensions

Implementation

|[comm. abstraction]
System (HW+SW) // :
[sw -={
dre o -y | I
PP SoC Chip Board F|rodu<:t s
I : - /.
Mutable / | Product
Template/ === =L I // Hierarchy
Parameterizable Original scope 1,
Fixed / _ _ _ _ _ _ _ _ _ _ __ v
N
. Extensions
Firmness

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH

Department of Computer Systems

Kactus2 IP-XACT Extension: Hierarchy

Extension

Standard

Hierarchy

Product

!

Board

}

Chip

}

SoC

}

IP (HW/SW)

Tampere Unive

rsity of Technology (C) 23.03.2012 TDH

Information (examples)

Specifications, parts list, approvals,%

PCB schematic, lay-out, test points,%

Datasheets, pin maps, timing,...

Design files, tool settings, versions,

7
7

Source files, models, documentatloy

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Kactus2 IP-XACT Extension: SW

BSW components have VLNV identity
BmStructural description of SW

BMProvide means of SW code validation
against formally defined APIs

BExample: a software platform stack

arria_ii_gwx_demo_sac 1,00 [Design] funbase_nios_stack (1.0) [Platform Stack] £ |

Low-level Middle-level High-level Out Lo :il

.27l Provided API

| SW component

1 Required AP

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Extension: Application
Communication interface

B Defines how HW or SW application communicate with
each other

B First implementation: Multicore association MCAPI
® Defines logical communications topology
® Programmers view to product through hierarchies

B HW components are seen as virtual MCAPI nodes

B Benefit: Applications are portable between HW/SW and
SW/SW

MCAPI | TTA processor ID=1

_ . channels
Video Generator fixed HW D=0 —’ Endpoint <HW,4,1>

. Virtual F
Fixed HW : o co
Endpoint <HW,0,1> 4’ Endpoint <HW,4,2>

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

AP Example IP-XACT Library

Algorithm X

and SoC Layers

SW Platform API
X _endpoints

X_endpoints

Communication abstraction

1
i Drag an Application from the library |
OR. double-dick to create new i ‘

EXAMPLE

Application SW

Mame: data_in
Endpoint: <HW, unset, unset:

SW abstraction (API)

Hame: data_out
Endpoint: <HW, unset, unset:

[SW platform (optional)]

SW Platform component]
HIBI driver Hardware abstraction

hibi_driver [HW p I atform]

HW Platform Component
TTA processor

‘e f Disclaimer: Kactus2 v1.4 onwards will present changes
il - . : $ TAMPERE UNIVERSITY OF TECHNOLOGY
T gy (C) 23.03.2012 TDH

Department of Computer Systems

SW Application

Component creation

(e SN, e

SW Platform API

j New Co t
X_endpoints ew Componen

- Creates a flat (non-hierarchical) component

Kactus Attributes

Product Hierarchy:

Component

Drag an Application from the library
OR. double-dlick to create new

WLNY
= Endpoints

Vendor:
Mame: data_in
Endpoint: <HW, unset, unset: Library: soc
Hame: data_out Mame:
Endpoint: <HW, unset, unset:

Version:

Directory: C:\Dropbox'Kactus2 development\factus 2tutorial

SW Platform component
HIBI driver

| EXAMPLE

hibi_driver

e

HW Platform Component
TTA processor

B
Disclaimer: Kactus2 v1.4 onwards will present changes _

gy (C) 23.03.2012 TDH "MK Department of Computer Systems

SW Application
Algorithm X

SW Platform API
X _endpoints

OR. double-dick to create new

Drag an Application from the library

Mame: data_in
Endpoint: <HW, unset, unset:

Hame: data_out
Endpoint: <HW, unset, unset:

SW Platform component
HIBI driver

hibi_driver

HW Platform Component
TTA processor

Disclaimer: Kactus2 v1.4 onwards will present changes

gy (C) 23.03.2012 TDH

SW component creation

-
l,yj New Lo g
|
g New SW Component
Creates a SW component
Compong Type
~~ @ SW Application
~ Creates a software component for packetizing application code.
= MCAPI Endpoints
: Desi L= — Creates a software component for packetizing MCAPI endpoints.
esign
| / = SW Platform
/ ~ Creates a flat (non-hierarchical) software platform compaonent.
I _!_ ~ SW Platform Stack
| = Creates a hierarchical software platform for combining software platform components.
SW Corpgo.
VLNV
t Vendor:
// Library:
SW Desi
E=ign Mame:
G Version:
b
System Directory: C:'\Dropbox\Kactus2 development\Kactus 2tutorial
; EXAMPLE
us

o) Coma]

JLOGY
"MK Department of Computer Systems

1. Library items

SW Application
Algorithm X

SW Platform API

System design from HW
and SW components

System design

. Firstsoc
X _endpoints
X_endpoints firstsoc_tta_2 (ID = 0) | S firstsoc_tta_1 (ID = 1) 2
i Drag an Application from the library i i e e L i e
_____ ?F‘_TH?'F:?E‘EETE_I-'_E_“_'_____: i Drag a SW platform from the library | oo i Drag a SW platform from the library |
i OR double-dick to create new i i OR double-dick to create new i
= Endpoints B R
Mame: data_in

Endpoint: <HW, unset, unset:

Hame: data_out
Endpoint: <HW, unset, unset:

3. SW to HW mapping = | Kactus2 system design

SW Platform component
HIBI driver

hibi_driver

HW Platform Component
TTA processor

tta
hibi

EXAMPLE
HW design
Firstsoc
hibisegment_1 tta 1
hibi_port_1 hibi_paort_2 hibi
Z.HWdESign ZZZZZZZZZZZZZZZZZZZZTL tta_2

. . TAMPERE UNIVERSITY OF TECHNOLOGY
T gy (C) 23.03.2012 TDH Department of Computer Systems

Component

L

SW Compo..,

i

SW Design

e
‘e

System

e

Bus

A/ design creation in Kactus2

New Design

Creates a hierarchical design

Kactus Attributes

Product Hierarchy: [SuC -]

Firmness: [Template -]

VLMY
Vendor:
Library: soc
Mame:

Version:

[Brougs |
HW design
Firstsoc

Directory: C:\Dropbox'\Kactus2 development\Kactus 2tutorial

hibisegment_1 tta 1
hibi_port_1 hibi_paort_2
Kt I N e
2 EXAMPLE | T
o Ha2
........................... hibi

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

i

SW Design

SW Compo..,

System creation in Kactus2

L9 o

New System
Creates a system design for an existing component
Select component:
> k3547 |
¢ el Select to which HW platform the
4 firstsoc SW will be mapped
draft
| EXAMPLE
Select configuration:
[struch.lral \ HW design
VLMY
Firstsoc
Vendor: tutorial |-|-|

Library: soc

Mame: hibisegment_1 tta_1
hibi_port_1 hibi_paort_2
Version:
Directory: C:\Dropbox'\Kactus2 developmentKactus 2tutaorial ftutorial fsoc LI tta 2

Disclaimer: Kactus2 v1.4 onwards will present changes

JLOGY

012 TOH "MK Department of Computer Systems

System creation in Kactus2

This is the HW component :
i hat accomodates System design
mstz.:mce tha Firstsoc
SW instances

firstsoc_tta_ 2(D=0) Q| T firstsoc_tta_1(D=1) O |
i Drag a SW platform from the library i oo i Drag a SW platform from the library i
EXAMPLE OR. double-dlick to create new i i OR. double-dlick to create new
.......... A

Drag-drop, or

Click to create from scratch
to complete:

SW platform or stack
Endpoints

Applications

B Note: Kactus2 v 1.3 supports application SW
components only together with MCAPI
endpoints (but you can use empty endpoints if
needed)

B Kactus2 from v1.4 generalizes communication
interface to support also other than MCAPI

abstraction

. . TAMPERE UNIVERSITY OF TECHNOLOGY
Tampere University of Technology (C) 23.03.2012 TDH Department of Computer Systems

Complete Kactus2 system design

SW Application
Algorithm X

System design

SW Platform API
X _endpoints

X_endpoints

i i
| Drag an Application from the library |
| OR double-dlick to create new i

=] Endpoints
Name: data_in

Endpoint: <HW, unset, unset>

//

Mame: data_out
Endpoint: <HW, unset, unset>

SW Platform component

HIBI driver

hibi_driver

Endpoint: <HW, 0, 0=

Mame: data_out
Endpoint: <HW, 0, 1=

Firstsoc
Cetzwon P | weeesiwon P
a.gﬂ_enmk EEEEEES oy enclpeiis
o —————
algoritmY_0 algorithm_1
H Endpoints BERERERES Endpoints
Mame:data_n |l Name: outputt

Endpoint: <HW, 1, 1>

hibi_driver_0

Names: inputt
Endpoint: <HW, 1, 0=

EXAMPLE

hibi_driver_1

Disclaimer: Kactus2 v1.4 onwards will present changes

Tampere University of Technology (C) 23.03.2012 TDH

£

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

App code template generation

firstsoc (draft) [System] = main.c [Code] [£J

X_endpoints (draft) [MCAPI Endpoints]

¥ File: main.c
* Generated by EKactusZ on 2012-01-23.

*f

$include <stdlib.h
$include <=tdioc.h>

ff Thiz header includes the KactusZ generated MCAPI code.
$include <ktsmcapicode.h>

firstsoc_tta_2 (ID = 0) 2

algoY_endpoints

int main({int argc, char® argvi[])
{
S Imitialize MCAPI.
if (initializeMCAPI () '= 0)
{
S TODD: Write error handling code.
return EXIT FATLURE;

Sf TODD: Write your application code here.
Sf Finalize MCAFI before exiting.

moapi finalize(&status):
return EXTT SUCCESS:

algoritmY_0

= Endpoints

Name: data_in
Endpoint: <HW, 0, 0>

Tampere University of Technology (C) 23.03.2012 TDH

>-"

. 3 EXAMPLE

L

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

TO BE ADDED LATER

SW and HW/SW mapping,
attributes in detail

. <l TAMPERE UNIVERSITY OF TECHNOLOGY
eeeeeeeeeeeeeeeeeeeeeeeeeeeee (C) 23.03.2012 TDH Department of Computer Systems

References

MIEEE1685-2009 standard

HmLauri Matilainen, Antti Kamppi, Joni-Matti
Maatta, Erno Salminen, Timo D.
Hamaldinen, "KACTUS2: IP-XACT/IEEE1685

compatible design environment for
embedded Multiprocessor System-on-Chip
products”, Tampere Univeristy of
Technology, Report 37, 2011, ISBN 978-

952-15-2625-1
Bhttp:// funbase.cs.tut.fi
Bhttp://sourceforge.net/projects/kactus2/

. <l TAMPERE UNIVERSITY OF TECHNOLOGY
eeeeeeeeeeeeeeeeeeeeeeeeeeeee (C) 23.03.2012 TDH Department of Computer Systems

