
Introduction to IP-XACT with
Kactus2 + extensions

Antti Kamppi, Joni-Matti Määttä, Lauri
Matilainen, Erno Salminen, Timo D.
Hämäläinen

Tampere University of Technology (C) 23.03.2012 TDH 1

Updated March 23, 2012

Outline
 Motivation
 Standard IP-XACT concepts and Kactus2 examples

 IP-XACT design process and metadata objects
 IP-XACT connections
 Design hierarchy
 Addressing
 Design configurations

 Introduction to Kactus2 extensions for SW, HW/SW mappings
and communication

 Kactus2 IP-XACT extensions and examples
 Summary of standard and extended IP-XACT objects and elements

inside objects
 Communication interface and definition
 SW component and design
 System component and design

Tampere University of Technology (C) 23.03.2012 TDH 2

Motivation

Metadata based design

Tampere University of Technology (C) 23.03.2012 TDH 3

The Challenges
 Design of IP (HW, SW) for reusability and portability

 Reuse is not the primary constraint due to tight project deadlines
and/or performance

 Too big overhead in time and effort to make it reusable

 Errors in design data access and transfers
 Missing, outdated, informal documentation: Understanding the IP

takes much time between people
 The same information is typed in several times
 Lots of manual inspections for correctness
 Much time to search for correct versions, files and file

dependencies

 Platform and component dependency
 Locking into vendor, IP, tool, custom tool format
 Problems in component availability trigger laborious re-design

without any other need

 Special expertise required
 Much more SW engineers available than HW/FPGA engineers

Tampere University of Technology (C) 23.03.2012 TDH 4

ITRS roadmap 2011-2026

Tampere University of Technology (C) 23.03.2012 TDH 5

The Solutions
 Make designing for reuse fun

 Not an extra effort but elementary part of the design approach
 Do reusability at once, not as a separate part
 Easy to follow design flow & tools, also for SW engineers

 Use metadata
 Replace informal documentation by machine readable metadata
 Vendor, tool, abstraction independency

 Open formats and tools
 Advanced tools are too expensive for SMEs, but an SME can invest

its share of time to contribute open tools

 Incremental adoption of metadata
 Any new method should be gradually deployed without disturbing

existing design flow
 Often too expensive modify all legacy IP, so allow both new and

old exist at the same time
 Metadata does not require any new IP content creation tools

Tampere University of Technology (C) 23.03.2012 TDH 6

IP-XACT 1.5
approved as
standard in 2009

Defines metadata
format (XML) for
describing IPs,
designs,
configurations,
tools and
automation
scripts

Tampere University of Technology (C) 23.03.2012 TDH 7

IP-XACT

IP-XACT Goals & Benefits Simplified

”The model”: Vendor,
implementation language,
abstraction level and tool
independent description of IP-
blocks and systems

Standardized integration and
configuration flow independent of
vendors

Standard tool interfaces
Metadata is “machine readable”

information about the IP itself
 “Electronic databook”

Tampere University of Technology (C) 23.03.2012 TDH 8

Kactus2 in brief

Purpose: For schetching, packing,
integrating and generating both HW
and SW for embedded products at
several hierarchy levels

Goal: Easiest to use metadata based
tool

Objective: Standard compliant
IP-XACT/IEEE1685 + extensions

Details: see http://funbase.cs.tut.fi

Tampere University of Technology (C) 23.03.2012 TDH 9

Meta-
data
wrt.
traditional
design
flow

10

IP-XACT
Design
environment

Product creation tools
HDL synth, SW build

Generators

Libraries

IP, comp, board, spec, …
design tools

VHDL, C/C++, doc, xls, …

Products

Typical
design
flow

Metadata
based
design
flow

System level tools
UML, SysML, SystemC,…

Product
specification
and design
tools

IP-XACT XML
metadata
based
management
of design
information

Implementation
and production
tools

Tampere University of Technology (C) 23.03.2012 TDH

IP-XACT metadata objects

IP-XACT / IEEE1685

Tampere University of Technology (C) 23.03.2012 TDH 11

IP-XACT-based SoC design
 Input is IP-XACT component

 The sources are encapsulated and separated from the IP XML description
 E.g. HDL source code is embedded via links to the source file in XML file

 IP-blocks are assembled together in a IP-XACT design
 Structural, tool and vendor independent description of the system
 IP-XACT design tools handle its objects, not IP source files
 Compare: Mentor Graphics HDL designer is a visual VHDL design tool

 Generators are specific tools that configure or generate required
components
 IP-blocks and the design itself may have generic parameters, which are

configured using generators that are typically scripts

 Output is IP-XACT Design
 XML description of the complete system
 The final configured IP-XACT design can be seen as “instructions” how to

create the real system

Tampere University of Technology (C) 23.03.2012 TDH 12

IP-XACT-based SoC Design

Tampere University of Technology (C) 23.03.2012 TDH 13

Design tasks Artifacts

Library managemnt.

2. Assemble
and configure

Product creation

IP creation (HW/SW

1. Packetize

4. Generate
executables

3. Specify
new

IP-block
Metadata XML

HW, SW
Executable

Source(s)

Design
Metadata XML

Design / Integration
Tool
Metadata XML

EDA

Process
Metadata XML

IP-XACT objects
 IP-XACT Objects are XML

metadata files representing SoC
components, structure, and
configurations
 top-level XML schema definitions

 IP-XACT design environment
handles these objects

 Each object have unique ID:
”VLNV”
 Vendor, Library, Name, Version

 Objects refer to each other,
forming spanning trees of the
objects

 IP-XACT defines the structure of
SoC, not the actual functionality or
purpose

Tampere University of Technology (C) 23.03.2012 TDH 14

IP-XACT design environment: the
tool(s)

Design

Component

Bus definition

Abstraction definition

Design configuration

Generator chain

Abstractor

IP-XACT objects
1. A component description defines an IP or interconnect

structure.
2. A bus definition description defines the type attributes

of a bus.
3. An abstraction definition description defines the

representation attributes of a bus.
4. A design description defines the configuration of and

interconnection between components.
5. A design configuration description defines additional

configuration information for a generator chain or
design description.

6. An abstractor description defines an adaptor between
interfaces of two different abstractions.

7. A generator chain description defines the grouping and
ordering of generators.

Tampere University of Technology (C) 23.03.2012 TDH 15

VLNV header
 Each IP-XACT object is identified by VLNV (Vendor Library

Name Version)
 VLNV is used and only used to refer between IP-XACT objects
 VLNV is in the header of each XML file

 Contents is not specified in standard

 VLNV must be unique for each IP-XACT object
 E.g. IP-XACT design and component objects must have different

VLNVs, since the object type is not counted when making
references

 Tools may add validation of legal references between IP-XACT
objects (e.g. a design can not refer to bus definition)

IP-XACT design

…

<spirit:vendor>TUT.course.TKT3541</spirit:vendor>

<spirit:library>product</spirit:library>

<spirit:name>speden_spelit</spirit:name>

<spirit:version>1.0</spirit:version>

16 Tampere University of Technology (C) 23.03.2012 TDH

IP-XACT objects on disk

C:/…/my_nice_hw_ip/

./ip_xact/my_hw_ip.comp.1.0.xml
./documents
./vhdl_sources
./simulation
./whatever

Files related to the
IP-block

Tampere University of Technology (C) 23.03.2012 TDH

 Metadata is in practice XML-files on disk or database (depending on
used tools)

 IP-XACT metadata objects do not refer to each other by file names or
library paths, only by VLNVs

 Thus, IP-XACT does not specify the location on disk or name of the
XML-files
 Can be together with the related files, in a single global folder etc.

 User is not expected to modify and manage the XML-files
 Tools explore the disk/database to find the metadata files and to build

an IP-XACT library model
 Example:

IP-XACT metadata
file(s)

17

Example: IP-XACT object library
The libraries will sooner or later blow out with tens

of housands of files and IP-XACT objects
Tools must be used to manage the library

Tampere University of Technology (C) 23.03.2012 TDH 18

Library display filtering
based on attributes and
IP-XACT object types

Filtering/Search
based on VLNV

IP-XACT object library
shown by VLNV references
hierarchy starting from
topmost level

Library shown by IP-
XACT object types

EXAMPLE

Example: IP-XACT libraries

Tools create the object library based on XML-
files found

Kactus2 user must give root folder(s) to start
scanning

Tampere University of Technology (C) 23.03.2012 TDH 19

Kactus2 suggests
locations of new IP-XACT
objects based on the
default library

Only IP-XACT objects found
downwards from the given
root directories are shown on
the IP-XACT library

EXAMPLE

IP-XACT Component
 IP-XACT component is a general placeholder describing all

IP block types like processors, memories, accelerators and
building blocks for buses and various interfaces.

 A component contains independent elements that can be
referenced between each other within the component.

 File sets and file set groups are folder and file link
collections
 include information about used tools, description languages

and instructions how to handle the files

 Model parameters are used to configure
tools/implementation specified in views

 General parameters can be any configurable values or
symbols related to this component

 Addressing includes memory maps and address spaces
define addressable locations seen into and out from the
component

 Views represent different purposes of the component
 Ports and bus interfaces are used to connect component

to other components or special test structures
 Other information include e.g. signal constraints, routing

information inside component, whether this component is
a CPU, etc.

Tampere University of Technology (C) 23.03.2012 TDH 20

Component

Views

VLNV, general description

Channels

Ports

Address space

Model parameters

File sets, build options

CPUs

Bus interfaces

Memory map

General parameters

Misc/other elements

IP-XACT object
Element inside IP-
XACT object

References (IP-XACT component)
 IP-XACT elements refer
1. to other IP-XACT

objects by VLNV refs.
2. to each other inside a

component by name
refs.

3. to files and folders by
file refs

 Note: User or tools
must make sure
uniqueness and
coherence of all
references

Tampere University of Technology (C) 23.03.2012 TDH 21

IP-XACT Component

Views

VLNV, general description

Channels

Ports

Address space

Model parameters

File sets, build options

CPUs

Bus interfaces

Memory map

General parameters

Misc/other elements

Example (not all refs. shown)

VLNV IP-XACT
Design

name File
file

name

IP-XACT Bus
definition

VLNV

name

IP-XACT Design

 IP-XACT design is like a traditional schematic of
components

Describes a list of component instances and
connections between each other

Tampere University of Technology (C) 23.03.2012 TDH 22

Design

Component A
Instance 1

Component A
Instance 2

Component B
Instance 1

Component A

Component B

Component C

Library of IP-XACT components

Integration and connections

IP-XACT / IEEE1685

Tampere University of Technology (C) 23.03.2012 TDH 23

About connections
 Component’s external interfaces are ports or bus interfaces.
 Connections between ports are called ad-hoc connections.
 Connections between bus interfaces are called interconnections.
 Bus is a general term for all kinds of interconnection topologies

 simple buses, crossbars, network on chip

 Component port is an external connection from the component, also called physical
port.
 It can be wire for implementations or abstract for modeling purposes.
 A port is a single signal (one wire) or a group of signals (vector, set of wires).
 Port direction is mandatory (in, out, inout, phantom).
 IP-XACT does not support tri-state or multiple strength values.

 Component bus interface is a grouping of ports associated to an IP-XACT bus
definition

 Same ports can be used several times for different bus interfaces and ad-hoc
connections.

Tampere University of Technology (C) 23.03.2012 TDH 24

Component Physical
ports

busInterface

busInterface
Component

Physical
ports

busInterface

Interconnection

Ad hoc connection

Component bus interfaces
 Background: typical SoC buses have strict master-slave roles that are called bus

interface modes in IP-XACT
 Master can initiate transfers, slave can only respond

 Bus interfaces are direct or mirrored
 Mirrored interface has the same signals, but directions are reversed
 A signal that is an input on a direct is an output in the mirror interface

 IP-XACT default is direct-mirrored connections
 Mirrored-mirrored is not allowed
 Direct connection is allowed with some restrictions

Tampere University of Technology (C) 23.03.2012 TDH 25

Component Master Component Mirrored
Master

Component Master Component Slave

Component Mirrored
Master

Component Mirrored
Slave

Component System Component Mirrored
System

Bus interface

Example: Ports
 A port can be a vector (bus) or a

single wire with types and default
values defined

 Ad-hoc connections are NOT
recommended, since connection
validation is poorer

 Use bus interface also for single-
wire ports

Tampere University of Technology (C) 23.03.2012 TDH 26

If checked, this port is visible for
ad-hoc connections in all
instances of this component

EXAMPLE

IP-XACT component
instance in a design

Port for
ad-hoc

Bus
interface

Component Component

About connection abstraction
 IP-XACT uses abstraction to connect two components together
 Bus definition and abstraction definition define logical signals for a bus
 Ports (physical signals) are mapped to logical in components bus interface

Tampere University of Technology (C) 23.03.2012 TDH 27

Ports

busInterface

Grouping of ports for a bus

mem_addr_out

….

Bus and abst.
definition

MEM_ADDR

busInterface Ports
 local_address

…. …

Component Component

mem_addr_out local_address

Logical signals Mapping between
physical and
logical signals

 When the design is implemented in RTL (VHDL), the final result is this:

IP-XACT Bus and Abstraction
definitions

 IP-XACT bus definition specifies general bus properties like
 Maximum number of masters and slaves allowed
 Bus is addressable (it is possible to see memory locations through it)
 What kind of connections are allowed (mirrored-direct, direct-direct)

 IP-XACT Abstraction definition is optional refinement object always used together with
bus definition. It defines logical bus signals and constraints related to them, like
 bus width
 direction of logical signals
 presence of signal with respect to some condition (some with master, some with slave)

 Several abstraction definitions may exist for one bus definition
 Port map is part of component’s bus interface defining the mapping between physical

and logical signals

28

Component

busInterface

portMap

busDefinition

abstractionDefinition

model

port Physical signals Logical bus
signals are
defined here

Mapping
between
logical and
physical signals

Tampere University of Technology (C) 23.03.2012 TDH

Example: BusDef and AbsDef
 Kactus2 groups together Bus and Abstraction definition, but abstraction

definition is not compulsory

 Abstraction definition includes qualifiers (address, data, clock, reset,
any) and presence (required, optional, illegal)

 Complex signal conditions can be created

 E.g. some signal is not allowed if the interface is master

Tampere University of Technology (C) 23.03.2012 TDH 29

Abstraction
definition

Several abstraction definitions may
exist for a single bus definitions

Bus definition
EXAMPLE

Example: Bus interface port map
 Kactus2 interface editor displays port map specific to a

bus interface

Tampere University of Technology (C) 23.03.2012 TDH 30

EXAMPLE

Bus interface

Bus definition
VLNV

Abstraction
definition
VLNV

Component
ports Bus signals

Example: Port Map

Tampere University of Technology (C) 23.03.2012 TDH 31

EXAMPLE

Port map with offset
 IP-XACT allows mapping with offset between physical and logical signals
 Typical uses

 Components have different physical bus widths
 Master and slave components have different mappings but same bus connects both

 Extreme example: one very big Abstraction definition for all possible signals.
Components map only the signals they need

32

busInterface X

portMap

Abstraction
Definition

Physical signals
are mapped
with offset

Default
mapping
between
logical and
physical signals

Right

busInterface Y

portMap

Left

Width

Right Left

Right Left
Offset

Offset

Physical signals

Physical signals

Logical signals

0 1 2 n

0 1 2 n

Tampere University of Technology (C) 23.03.2012 TDH

Example: port map with offset

33

EXAMPLE

Mapping is done
here by selecting,
sorting and drag-
dropping across the
lists

Already mapped
drop down to
appear here. Delete
= remove mapping

Map to many at
the same time

Abstraction
Definition

Right

portMap

Left

Right Left Physical: local_address

Logical: MEM_ADDR_

0 24

Tampere University of Technology (C) 23.03.2012 TDH

Design Hierarchy

IP-XACT / IEEE1685

Tampere University of Technology (C) 23.03.2012 TDH 34

IP-XACT Component (top)

Design hierarchy
 IP-XACT design never refer to other designs
 A design refers to components that are instantiated into

design
 The design itself can be wrapped inside a top level component

in order to use it as a subdesign
 References always go downwards in hierarchy

 IP-XACT component can refer to a lower hierarchy IP-XACT design
 IP-XACT design cannot refer to any top level component

Tampere University of Technology (C) 23.03.2012 TDH 35

IP-XACT Design

IP-XACT Component

IP-XACT Component

Component is hierarchical
if it includes a reference to
a design

Design always includes
component instances

Example: Hierarchy

Tampere University of Technology (C) 23.03.2012 TDH 36

IP-XACT Component: arria_II_gx_demo_soc

IP-XACT Design: arria_II_gx_demo_soc

IP-XACT Component (instance): hibi_segment_small_1

IP-XACT Component

IP-XACT Design

Indicates this is a
hierarchical
component

This column
includes
hierarchical
connections

EXAMPLE

EXAMPLE

Create bus hierarchy from lower to
upper level

37

1)

2)

3)

comp

design

comp

Kactus2
component
column

Kactus2
IO
column

comp (hierarchical)

design

comp

Kactus2
component
column

Kactus2
IO
column

Create new
design with

”IO” to
upper level

Kactus2 creates
corresponding

component with
hierarchical bus

interface

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH

comp

design

Create bus hierarchy from top to
lower level

Tampere University of Technology (C) 23.03.2012 TDH 38

comp

Kactus2
component
column

Kactus2
IO
column

comp

design

Kactus2
component
column

Kactus2
IO
column

comp 1)

2)

3)

Create a new
component
with a bus
interface

Create new design for the
component: Kactus2 adds

bus interfaces to the
empty design from the top

level component

Do design and
connect to IO:

Hierarchy is
created

EXAMPLE

A detailed hierarchy example

Tampere University of Technology (C) 23.03.2012 TDH 39

comp

design

busInterface: pcie_4x_if
busType: pcie_4x.busdef

portMap
logicalPort: RST_N_FROM_PCIE
physicalPort: pcie_rst_n_phy

busInterface: pcie_4x
busType: pcie_4x.busdef

portMap
logicalPort: RST_N_FROM_PCIE
physicalPort: RST_N_FROM_PCIE_phy

comp

design

comp

pcie_4x_if.busdef

busInterface: pcie_4x_p
busType: pcie_4x.busdef

portMap
logicalPort: RST_N_FROM_PCIE
physicalPort: pcie_rst_n

pcie_4x

pcie_rst_n
.
.
.
.

ports

bus
pcie_rst_n_phy
.
.
.
.

ports

RST_N_FROM_PCIE_phy
.
.
.
.

ports

pcie_4x pcie_4x

bus intfce
bus

bus intfce
bus

bus intfce

pcie_4x_p pcie_4x_if pcie_4x

hier con hier con

reference direction

Addressing and bus
components

IP-XACT / IEEE1685

Tampere University of Technology (C) 23.03.2012 TDH 40

Component
C

IP-XACT addressing
 Address space is defined for a component’s master interface. It is

programmer’s view looking out from the master
 These addressess can be remote (in other component) or local (in this

component)
 Generators can create this based on connected memory maps

 Memory map is defined for slave interface to specify registers,
memory and IO accessible through this interface
 These addresses are physically located in this component

 Note: Address space and memory map can exist without any bus
interfaces

41

Memory
map Y

Slave

Component
A

Address
space =

X + Y
(for

example)

Master

Component
B

Memory
map X

Slave

Tampere University of Technology (C) 23.03.2012 TDH

Bus interface

IP-XACT addressing details
 Same address space can be associated to several master interfaces in a component
 Several address spaces can exist
 Address space may contain several segments
 Address space purpose can be defined like “executable program image”

 Association is done by address space reference that also tells the base address.

 Memory map address blocks define basic information and usage like “ROM” and
“non-volatile”.
 Advanced definitions include banks and address handling especially for bridge

components.

Tampere University of Technology (C) 23.03.2012 TDH 42

Component

Master

Address Space
•Range
•Width
•Address unit

Segment
•Offset
address
•Range

Address space
reference

Base address

Ref

Ref
Component

Slave

Memory map
 Address

block
•Base
address
•Range
•Width
•Address unit
•Usage

Memory map
reference

Ref

Ref

Address definitions
 Address unit bits tells the number of data bits in each

increment in address (default is 8 bits)
 Range specifies the range as the number of addressable units
 Width specifies the row width. It tells the maximum single

transfer size by a bus interface
 rows x width == addressUnitBits x range == bits

Tampere University of Technology (C) 23.03.2012 TDH 43

0

address units (bits)

width-1 (bits)

0 1 2
width 8 16 32

AUB=8, Range = 16 => 128 bits in the block

16 rows

8 rows

4 rows

Single addressable unit
Max single transfer unit

Rows =
(addressUnitBits x
range)/
width

Example: Address space

Single addressable unit

Max single transfer unit (in a bus interface)

EXAMPLE

Warning: ”data”
and ”stack”
segments overlap

Segment within
address block

Tampere University of Technology (C) 23.03.2012 TDH 44

Component

Bus components
 On-chip bus or other

network is implemented
with IP-XACT component
that
 include several bus

interfaces
 Bus interfaces are

internally connected as
channels or bridges

 Kactus2 uses separation
to regular and bus
components that can be
placed on separate
columns for better
readability

45

busInterface busInterface

busInterface busInterface

Component includes
channel(s) or bridge
connecting multiple
Bus interfaces
internally

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH

Channel
 Channel is often

used to implement
a single bus

 Only mirrored bus
interfaces are
allowed.

 Channel has only
one address space
that is same for all
mirrored master
interfaces.

 Mirrored slaves can
have subset address
spaces.

 A component can
have several
channels.

Tampere University of Technology (C) 23.03.2012 TDH 46

Component

Channel

Component

Channel

(internal
wiring is

not defined)
Mirrored
Master

Mirrored
Slave

Mirrored
Slave

Slave
(direct)

Channel

Mirrored
Master

Mirrored
Slave

Mirrored
Slave

Mirrored
System

Component

Master
(Direct interface)

Slave
(Direct interface)

Example: Channel
 Bus interfaces can be associated to one or more channels
 Channels do not specify any explicit signal-by-signal

mapping between bus interfaces, but just information
which ones are logically connected

Tampere University of Technology (C) 23.03.2012 TDH 47

This component has
only one channel
that connects shown
bus interfaces EXAMPLE

Double-click to see
drop-down list of
available bus
interfaces

Component

Bridge

Bridge
 Bridge is often used to connect different buses together.
 Bridge defines for each slave its connections to one or more

master interfaces.
 Internal wiring is explicitly defined

 Bridge has only direct interfaces, and it can connect to direct
or mirrored interfaces.

Tampere University of Technology (C) 23.03.2012 TDH 48

Master Slave

Master
Mirrored

Slave

Component

Slave
(Direct interface)

Mirrored Slave

Component

Bridge

Component
B

Transparent bridge addressing
 In transparent bridge, the address space seen from the master interface (out from

bridge) is seen as such at slave interface.
 If bridge connects multiple masters to a slave, the slave memory map contains all

master address spaces.
 Note that bridge master address space may not cover all of the available memory of

other component (B). Component A can transparently see B’s space as defined in
bridge’s master address space.

49

Master Slave

Address
Space

Memory
map

Memory
Map

Ref
Ref

Slave

Component
A

Address
space

Master

Tampere University of Technology (C) 23.03.2012 TDH

Component

Bridge

Component
B

Opaque bridge addressing
 In Opaque bridge, the address space on bridge’s

master interface is not directly seen from the slave
interface.

 In this case, the bridge makes complex mappings
with offsets and base addresses. See IEEE1685
Annex H for complete presentation.

50

Master Slave

Address
Space Memory

map

Memory
Map

Ref
Ref

Slave

Component
A

Address
space

Master

Tampere University of Technology (C) 23.03.2012 TDH

Design configuration

IP-XACT / IEEE1685

Tampere University of Technology (C) 23.03.2012 TDH 51

Component View
 A component can have several views

that describe
 information about implementation

environment
 design hierarchy
 associated files

 Views can be seen as different
purposes of the component
 “RTL view“ may describe the source

hardware module/entity with its pin
interface

 “A documentation view” may define
the written specification of this IP

 ”Structural view” may refer to an IP-
XACT design for hierarchical designs

 IP-XACT standard allows only one
active view for a component when
instantiated in a design

Tampere University of Technology (C) 23.03.2012 TDH 52

Component

View A

Hierarchical reference
to IP-XACT design or
design configuration

Non-hierarchical
reference to fileset

and/or

Tools, tool options,
languages, for this

view

and/or

View B
 …

IP-XACT Design configuration
 Defines

 Active (current) views for all component instances of the IP-XACT design
 Configuration for interconnections between the same bus types (bus

definition) but with different abstraction definitions. This uses IP-XACT
abstractor objects

 Configurable information for parameters defined in generators in IP-XACT
generator chain object

 A single design configuration applies to a single design, but a design
may have multiple design configurations

Tampere University of Technology (C) 23.03.2012 TDH 53

Design

Component A
Instance 1

Design
configuration

Active views
Parameters

Component A
Instance 2

Component B
Instance 1

Design
configuration

Active views
Parameters

Design
configuration
• Active view
• Parameters

For VHDL
generation

For high-level
simulation

”This is hierarchical
component”

View RTL

View STRUCT

View SIM

Configurations: Basic case 1
 Design configuration selects active views of component

instances in IP-XACT design
 E.g. one for implementation and one for simulation purposes

Tampere University of Technology (C) 23.03.2012 TDH 54

Design X

Component A
Instance 1

View RTL

View STRUCT

View SIM

Component
(top-level)

Design
configuration A
(”create VHDL”)

Component B
Instance 1

View RTL

View STRUCT

View SIM

Design
configuration B
(”create SIM”)

Design X

Component A
Instance 1

View RTL

View STRUCT

View SIM

Component B
Instance 1

View RTL

View STRUCT

View SIM

VLNV reference

VLNV + view name reference

Configurations: Basic case 2
 Design configuration selects different IP-XACT designs
 E.g. two different implementations for production and

testing
 Note: views can also be configured at the same time

Tampere University of Technology (C) 23.03.2012 TDH 55

Design X

Component A
Instance 1

View RTL

Component
(top-level)

Design
configuration A
(”product config”)

Component B
Instance 1

View RTL

Design
configuration B
(”test config”)

Design Y

Component A
Instance 1

View RTL

Component B
Instance 1

View RTL

Component C
Instance 1

View RTL

VLNV reference

VLNV + view name reference

Example: Design configurations
 Kactus2 manages/lists design configurations on right hand panel
 Kactus2 creates IP-XACT component, design and design configuration

objects for user
 User can add more configurations

Tampere University of Technology (C) 23.03.2012 TDH 56

Component
”firstoc”

Hierachical design for component
”firstsoc” on the design
configuration ”structural”

List of configurations

Component instance’s
active view in ”structural”
configuration

IP-XACT design

IP-XACT design configuration

IP-XACT component

IP-XACT design configuration #2

Objects on disk (note: Kactus2 takes care of XML files, do not edit manually)

EXAMPLE

Example: Creating configurations
 Example: A component have one

design and one configuration that
defines component instance views

 A new configuration may add
 new set of views and/or
 changes to the design structure
 a totally different design

 Note: it is not recommended to modify
hierarchical connections in a design for
some configuration
 Violates component-design hierarchy

consistence
 If needed, create a new component

(copy & give a new name or version)

Tampere University of Technology (C) 23.03.2012 TDH 57

Case 1: different
component
views only

Case 2:
modify the
design

Case 2:
different
design

Special Kactus2
extension: e.g. for
VHDL for the parent
component
independent of
hierarchy

EXAMPLE

Parameters
 Parameters make components configurable
 IP-XACT objects have parameters that can be used to

configure or hold any information
 name, value, attributes
 Parameter scope is not defined (global/local)
 Parameters can be of any type

 IP-XACT components may have also model parameters
 specific to the implementation of the IP-XACT object
 E.g. VHDL generics
 <name, type, usage, value>

 Values can be omitted or given as the defaults
 Design/instance specific values can override the defaults

Tampere University of Technology (C) 23.03.2012 TDH 58

 Model parameters are globally defined (not specific to
a source file)

 User must take care that a model parameter does not
affect unintentionally if the same name is used in
several source files (e.g. ”input”)

Tampere University of Technology (C) 23.03.2012 TDH 59

entity hibi_wrapper_r1 is
 generic (
 -- Structural settings.
 -- All widths are given in bits
 addr_width_g : integer;
 …

EXAMPLE

Example: Model parameter
defined in IP-XACT component

Example: Model parameter set
in IP-XACT design
 Model parameters are set in IP-XACT design for

component instances
 If not set, default values are used

Tampere University of Technology (C) 23.03.2012 TDH 60

EXAMPLE
Double-click
to see drop-
down list of
model
parameters

Example: Parameter

 Any parameter-value pair can be used within the IP-XACT
component

Tampere University of Technology (C) 23.03.2012 TDH 61

EXAMPLE

Configuration process

 IP-XACT component have properties that are common to all its
instances

 IP-XACT design and design configuration hold all instance specific
properties
 ”Configurable element value”define model parameter value

 Generated files can be stored to the file sets of the top component of
the design
 Not defined in the standard, but follows the hierarchy

Tampere University of Technology (C) 23.03.2012 TDH 62

Design X

Component A
Instance 1

View RTL

Component X for
design X
File set: generated
top VHDL
(ref to a.vhdl and
b.vhdl, with the
generics set)

Design configuration A for Design X
(”product config”)

Component B
Instance 1

View RTL

Components in library

Component A
File set: a.vhdl
Model param: bus_x_width
Views: RTL, SIM

Component B
File set: b.vhdl
Model param: bus_y_width
Views: RTL, SIM Bus_x_width

= 32
Bus_y_width

= 8

Instances in Design Generated
elements/files
in top
component of
the design

IP-XACT model parameter
propagation approach
 Basic idea: IP-XACT objects encapsulate their own properties

that should not depend on other objects (for maximum
reusablility)

 IP-XACT makes only downward hierarchy references
 IP-XACT component can refer to a design (lower hierarchy))
 IP-XACT design can not refer to a component (upper hierarchy),

only for a component instance at lower hierarchy design

 IP-XACT propagates model parameters only for one level
 From design to component instances
 Not from a component to designs

 Notes: Using fixed values (no parameters at all) are the safest
(debugging), but blows out the number of objects in library
 E.g. individual components for all fixed bus width variations
 Laborous to handle manually, but not a problem for automated

tools

Tampere University of Technology (C) 23.03.2012 TDH 63

Propagation of generic values in
VHDL design

Tampere University of Technology (C) 23.03.2012 TDH 64

Case B: Generics propagated from top level:
Changes to only top level is required

Case A: Generics do not have any dependencies between hierarchy levels: each
component should be edited separately if something changes in top level

VHDL generic benefits and
problems
Easy to make different versions by propagating

generics downwards
 Less files in disk, since only top-level components

are created for each configuration
From a sample VHDL file it is difficult to tell what

generic values were used and where they are
coming from

Difficult to debug and track product configurations
Propagation of VHDL generics can be implemented

in IP-XACT in two ways
 Implement tool automation for method A (preferred)
 Mimic VHDL generics propagation in method B

(possible but as error prone as VHDL)

Tampere University of Technology (C) 23.03.2012 TDH 65

IP-XACT model parameter in VHDL
Case A
 Basic mechanism: design has configurable element values (name,

value) that set component model parameters (instance specific)
 If fixed, no parameters are required
 Still possible to use modelParameter, but no dependency from

design to its top level component
 Tools can automate the process

66

Component: top_comp (topmost level)
modelParam: DSize = 32

Design: top_comp
confElementValue: none, or DataSize = 32

Component instance: sub_comp_1
modelParam: none, or DataSize, or DataSize=32

Design: sub_comp_2
confElementValue: none, or DWidth = 32

Component instance: sub_comp_3
modelParam: none, or DWidth, or DWidth = 32

Tampere University of Technology (C) 23.03.2012 TDH

IP-XACT model parameter in VHDL
Case B

 Propagation of generic values

 Kactus2 v. 1.3 VHDL generator
follows this princpiple

67

Component: top_comp (topmost level)
modelParam: DSize = 32 (default)

Design: top_comp
confElementValue: DataSize = DSize

Component instance: sub_comp_2
modelParam: DataSize

Design: sub_comp_2
confElementValue: Dwidth = DataSize

Component instance: sub_comp_4
modelParam: Dwidth (= 8 by default)

2. From design to
lower hierarchy
component
The standard way:
IP-XACT design
define values for
component
instance model
parameters

1. From
component to
design
This is not
specified in
standard, but
possible: use the
same parameter
names in
components and
designs

1

2

Tampere University of Technology (C) 23.03.2012 TDH

About versioning

Tampere University of Technology (C) 23.03.2012 TDH 68

my_component_v5.1.vhd

VLN_version_1.0

my_component_v5.1.b.vhd

1) File version change in repository

my_component_v5.1.vhd

No change to IP-XACT object

2) Version change ”ip-kind-wise” (e.g. branch in repository)

VLN_version_1.0

commit

branch

A) Update IP-XACT object

my_component_v5.1.vhd

my_component_v5.1.b.vhd VLN_version_1.1

branch

B) New IP-XACT object

VLN_version_1.0

Benefit, but also a
drawback if misused:
propagate change to all
objects

No automatic
propagation, but
requires modifying
other IP-XACT objects
referring to original
version ”1.0”

Introduction to Kactus2
extensions for SW, HW/SW
mappings and
communication

Tampere University of Technology (C) 23.03.2012 TDH 69

The general layer model

Reuse is implemented by strict use of
layers

70

Communication protocols between
applications

Platform independent SW code
(may be also OS independent)

Application independent SW code
(Operating system etc.)

Physical execution, storage and
communication

HW platform

SW platform (optional)

Application SW

Hardware abstraction

SW abstraction (API)

Communication abstraction

Tampere University of Technology (C) 23.03.2012 TDH

Kactus2 layer model

SW API (e.g.
between APP

and driver)

SW comp (e.g.
SW platform
component)

SW comp (e.g.
labelled as
Application)

HW comp

Communications
API

Communications
/ abstraction API:

MCAPI,
Socket, …

Structural API:
Function

prototypes, …

SW component,
flat or

hierarchical

HW component,
flat or

hierarchical

HW interface

Structural IFC:
Buses, timing diagram,

constraints, …

HW/SW
Mapping Defines communication

abstraction between applications

D
ef

in
es

 s
tr

u
ct

u
ra

l S
W

 la
ye

rs
 t

o

re
u

se
 S

W
 c

o
m

p
o

n
en

ts

Tampere University of Technology (C) 23.03.2012 TDH 71

Kactus2 IP-XACT extensions

Tampere University of Technology (C) 23.03.2012 TDH 72

Implementation

Product
Hierarchy

Firmness

HW

Comm. abstraction

System (HW+SW)

SW

Mutable

Fixed

Template/
Parameterizable

 IP SoC Chip Board Product

Original scope

Extensions

Kactus2 IP-XACT Extension: Hierarchy

Tampere University of Technology (C) 23.03.2012 TDH 73

Product

Board

Chip

IP (HW/SW)

SoC

Hierarchy Information (examples)

Specifications, parts list, approvals,

PCB schematic, lay-out, test points,

Datasheets, pin maps, timing,…

Design files, tool settings, versions,…

Source files, models, documentation

St
an

d
ar

d

Ex
te

n
si

o
n

Kactus2 IP-XACT Extension: SW

SW components have VLNV identity
Structural description of SW
Provide means of SW code validation

against formally defined APIs
Example: a software platform stack

Tampere University of Technology (C) 23.03.2012 TDH 74

EXAMPLE Provided API Required API SW component

Extension: Application
Communication interface
 Defines how HW or SW application communicate with

each other
 First implementation: Multicore association MCAPI

 Defines logical communications topology
 Programmers view to product through hierarchies

 HW components are seen as virtual MCAPI nodes
 Benefit: Applications are portable between HW/SW and

SW/SW

75

Endpoint <HW,4,2>

TTA processor ID=1

Endpoint <HW,4,1> Video Generator fixed HW ID=0

Virtual
Endpoint <HW,0,1>

Fixed HW App code

MCAPI
channels

Tampere University of Technology (C) 23.03.2012 TDH

Example IP-XACT Library
and SoC Layers

76 76

HW Platform Component
TTA processor

SW Application
Algorithm X

SW Platform component
HIBI driver

SW Platform API
X_endpoints

HW platform

SW platform (optional)

Application SW

Hardware abstraction

SW abstraction (API)

Communication abstraction

Disclaimer: Kactus2 v1.4 onwards will present changes

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH

Component creation

77 77

HW Platform Component
TTA processor

SW Application
Algorithm X

SW Platform component
HIBI driver

SW Platform API
X_endpoints

Disclaimer: Kactus2 v1.4 onwards will present changes

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH

SW component creation

78 78

HW Platform Component
TTA processor

SW Application
Algorithm X

SW Platform component
HIBI driver

SW Platform API
X_endpoints

Disclaimer: Kactus2 v1.4 onwards will present changes

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH

System design from HW
and SW components

79

HW Platform Component
TTA processor

SW Application
Algorithm X

System design
Firstsoc

SW Platform component
HIBI driver

SW Platform API
X_endpoints

HW design
Firstsoc

2. HW design

3. SW to HW mapping = Kactus2 system design

1. Library items

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH

HW design creation in Kactus2

HW design
Firstsoc

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH 80

System creation in Kactus2

HW design
Firstsoc

Select to which HW platform the
SW will be mapped

Disclaimer: Kactus2 v1.4 onwards will present changes

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH 81

System creation in Kactus2

 Note: Kactus2 v 1.3 supports application SW
components only together with MCAPI
endpoints (but you can use empty endpoints if
needed)

 Kactus2 from v1.4 generalizes communication
interface to support also other than MCAPI
abstraction

System design
Firstsoc

This is the HW component
instance that accomodates
SW instances

Drag-drop, or
Click to create from scratch
to complete:
- SW platform or stack
- Endpoints
- Applications

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH 82

Complete Kactus2 system design

83

SW Application
Algorithm X

System design
Firstsoc

SW Platform component
HIBI driver

SW Platform API
X_endpoints

Disclaimer: Kactus2 v1.4 onwards will present changes

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH

App code template generation

EXAMPLE

Tampere University of Technology (C) 23.03.2012 TDH 84

SW and HW/SW mapping,
attributes in detail

TO BE ADDED LATER

Tampere University of Technology (C) 23.03.2012 TDH 85

References

IEEE1685-2009 standard
Lauri Matilainen, Antti Kamppi, Joni-Matti

Määttä, Erno Salminen, Timo D.
Hämäläinen, "KACTUS2: IP-XACT/IEEE1685
compatible design environment for
embedded Multiprocessor System-on-Chip
products", Tampere Univeristy of
Technology, Report 37, 2011, ISBN 978-
952-15-2625-1

http:// funbase.cs.tut.fi
http://sourceforge.net/projects/kactus2/

86 Tampere University of Technology (C) 23.03.2012 TDH

