
1

Draw2D ● Javascript Graphics
Engine

● Points ● Lines ● Quadratic Curves ● Cubic Curves

● Triangles ● Rectangles ● Polygons ● Ovals ● Arcs ● Round
Rectangles ● Events

Draw2D ● Javascript Graphics Engine

Written by magicjava, 2009. All code has been placed in the pubic domain.

Updates! 6

Version 1.1! 6

Browsers! 7

Compatibility! 7

Speed! 7

Versions! 7

Key Concepts! 8

HTML And JavaScript! 8

View! 8

Color! 8

Shapes! 8

Events! 8

Sample! 9

A Simple Example! 9

HTML And JavaScript! 10

HTML! 10

JavaScript! 10

View! 12

Overview! 12

Coordinate System! 12

Shapes! 12

2

Inheritance! 12

Constructor! 12

Key Functions Defined In View! 13

Color! 14

Red, Green, Blue, Alpha, And Transparent! 14

Inheritance! 14

Constructor! 14

Key Functions Defined In Color! 15

Shapes! 17

Shape Classes! 17

Shape Base Class! 17

Shape Inheritance! 17

Shape Constructor! 17

Key Functions Defined In Shape! 17

Point Class! 20

Point Inheritance! 20

Point Constructor! 20

Key Functions Defined In Point! 20

Line Class! 22

Line Inheritance! 22

Line Constructor! 22

QuadraticCurve Class! 22

QuadraticCurve Inheritance! 22

3

QuadraticCurve Constructor! 22

CubicCurve Class! 23

CubicCurve Inheritance! 23

CubicCurve Constructor! 23

Triangle Class! 24

Triangle Inheritance! 24

Triangle Constructor! 24

Rect Class! 25

Rect Inheritance! 25

Rect Constructor! 25

Polygon Class! 25

Polygon Inheritance! 25

Polygon Constructor! 25

Oval Class! 26

Oval Inheritance! 26

Oval Constructor! 26

Arc Inheritance! 27

Arc Constructor! 27

RoundRect Inheritance! 28

RoundRect Constructor! 28

Events! 30

Events! 30

EventInfo Class! 30

4

EventInfo Inheritance! 30

EventInfo Constructor! 30

MouseClickInfo Class! 30

MouseClickInfo Inheritance! 31

MouseClickInfo Constructor! 31

MouseMoveInfo Class! 32

MouseMoveInfo Inheritance! 32

MouseMoveInfo Constructor! 32

Event Functions! 33

5

Updates

Version 1.1

Version 1.1 adds a step parameter to the constructors of curve drawing objects. This parameter can be be used to in-
crease accuracy at the cost of speed or increase speed at the cost of accuracy. The new parameter is an optional pa-
rameter available as part of the constructors for the QuadraticCurve, CubicCurve, Oval, Arc, and RoundRect classes.

A bug with the rendering of CubicCurves was fixed.

6

Browsers

Compatibility

Draw2D uses only standard HTML DOM and should be compatible with any modern browser. It’s been tested on the
following browsers:

Speed

An informal benchmark on the performance of Draw2D was done on Safari, Firefox, Chrome, and Opera. The
benchmark consisted of drawing and filling over 6000 rectangles.

Broadly, Safari and Chrome were fastest, while Firefox and Opera were noticeably slower.

For extra points, however, Opera has the nice feature of updating the window while the script runs, allowing you to
watch the progress. All the other browsers wait until the script has competed before any window updates take place.

Versions

Compatibility and speed tests were done on a Macintosh using the following browser versions:

● Safari 4.0.5

● Firefox 3.0.18

● Chrome 5.0.307.11 beta

● Opera 10.10

7

Key Concepts

HTML And JavaScript

Draw2D is a JavaScript package that runs inside HTML pages, letting you add on the fly graphics to your pages. The
Draw2D JavaScript code comes in a single file, Draw2d.js, which you’ll include in your HTML file.

View

Think of a View as the piece of paper you’ll use to draw your graphics. A View has a width, a height, and a collection
of Shapes, such as Lines and Rectangles.

Inside your HTML page, you’ll write JavaScript to create your View, create the Shapes you want on the View, and add
any desired event handing.

Color

You’ll use color to color the background of the View and the line draw-
ing and fill colors used to draw Shapes. Colors have four components,
red, green, blue, and alpha. The red, green, and blue values combine to
specify a specific color. The alpha value specifies the transparency of

the color.

Shapes

Draw2D provides several Shapes ready for you to use: Points, Lines, Quadratic Curves, Cubic Curves, Triangles,
Rectangles, Polygons , Ovals, Arcs, and Round Rectangles. You’ll create the Shapes you want to appear on the View,
set their properties, including location, size, and color, and draw the View.

You can change the properties of a Shape, such as its color, during runtime if you wish, allowing the appearance of
the Shape to dynamically change.

Shapes can have other Shapes as children, allowing you to work with a hierarchy of Shapes all at once.

Events

You can setup your Shapes to handle events. When the given event triggers, the function you supply will be exe-
cuted. You can also set the colors used to draw the Shape when the event occurs.

Mouse click, mouse double click, mouse down, mouse up, mouse over, and mouse out events are supported.

8

a

Sample

A Simple Example

This section provides a simple example of using Draw2D. Notable lines are highlighted in yellow. The script draws a
rectangle inside an HTML page. The rectangle has a black border and a red interior and appears on a grey back-
ground.

Notice a Script tag is used to include Draw2D.js. This is the Draw2D JavaScript code.
Another Script tag is used to write a function called initDraw(). The initDraw()
function creates 3 Colors, a View, and a Rectangle. The Rectangle is added to the View
and the View is instructed to draw and fill all the Shapes it has.

Finally, the Body tag is set to call initDraw() when the HTML page starts to load.
This sets all the drawing in motion. The end result is shown here.

9

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>New Web Project</title>
	 	 <script type="text/javascript" src="./Draw2D.js"></script>
	 	 <script type="text/javascript">
	 	 	 function initDraw()
	 	 	 {
	 	 	 	 var oGrey = new Color(200, 200, 200, 0);
	 	 	 	 var oBlack = new Color(0, 0, 0);
	 	 	 	 var oRed = new Color(255, 0, 0);
	 	 	 	 var oView = new View(0, 0, 100, 100, "View1",
document.body, document, oGrey);
	 	 	 	 var oRect = new Rect(10, 10, 80, 80, oBlack, oRed);
	 	 	 	
	 	 	 	 oView.addShape(oRect);
	 	 	 	 oView.draw(oView);
	 	 	 	 oView.fill(oView);
	 	 	 } // initDraw	 	 	
	 	 </script>
	 	
 </head>
 <body onLoad="initDraw();">
 </body>
</html>

http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

HTML And JavaScript

HTML

HTML is a document that has several sections to it, and those sections can have sub-sections, which can also have
sub-sections, and so on down the line. The sections are marked by tags, which are a collection of keywords the de-
limit the beginning and end of a section.

In the HTML example on the previous page, we can see an HTML tag, written as <html> , that marks the beginning of
the HTML section (which is also called the Document section), along with a corresponding </html> tag at the end
marking the end of the Document section. Within the Document section we can see tags for Header and Body sec-
tions marked with the HEAD and BODY tags. The Header and Body sections are subsections of the Document section.

Everything that appears on a web page is stored somewhere inside an HTML Document structure this way. Further-
more, the entire structure can be accessed using JavaScript.

The Draw2D script needs to know a bit about these sections so that it knows where in the HTML document to put
the graphics it creates. In the example on the previous page,note the creation of a new View object in the middle of
the HTML. There’s a call to new View(), with several parameters being passed to View(). These parameters will be
covered in detail in the View chapter, but for now, notice that document and document.body parameters.

The document.body parameter tells the Draw2D script where to place the items it creates. In this case, it says they
will be a subsection below the Body section of the Document. This parameter doesn’t necessarily have to be the Body
section. It could be, for example, a Div section within the Body section. If you’re familiar with what’s known as the
the JavaScript DOM (Document Object Model), you can walk the DOM to get any meaningful section you want and
pass that section to the Draw2D script rather than using the Body section as was done in the sample.

The document parameter, on the other hand, always needs to be document, not anything else. The Draw2D script
uses the document object to create the other objects it needs.

These are the only two parameters in Draw2D that reference the JavaScript DOM and in most cases you’ll be able to
use the values exactly as shown in the example on the previous page.

JavaScript

As its name implies, JavaScript is a very good scripting language. It can be used to quickly add short snippets of
functionality to a web page. However, JavaScript is also a good object-oriented language. You can create objects that
store both data and functions used to manipulate that data. You can also use a methodology known as inheritance that
gives a JavaScript class access to all the data and methods of the class it inherits from. Draw2D uses JavaScript objects
and inheritance.

In the example on the previous page, the new Color(), new View() and new Rect() calls are examples of creat-
ing Draw2D JavaScript objects. These calls that create objects are known as constructors.

The oView.addShape(oRect) and oView.draw(oView) are examples of using the methods of an object.

10

Another feature of JavaScript is the support for optional parameters in function calls. Any parameter not specified is
set to the value of null. Draw2D makes use of optional parameters to shorten the amount of information that needs
to be passed to some constructors and functions. In these cases, Draw2D assigns reasonable default values for the
missing parameters.

The description of a constructor or function that has optional parameters will indicate which parameters are optional
and what the default values are.

11

View
Overview

A View acts as the paper upon which the Shapes of Draw2D
are drawn. The View is nothing more than a rectangular box.
This box has a coordinate system that specifies locations on
the View, a background color that specifies the color of the
View, and a collection of functions that can be called to pre-
form operations on the view, such as adding and removing
Shapes and drawing the View.

Coordinate System

The coordinate system has an X axis, which goes from left to
right, and a Y axis which goes from top to bottom. Points
along the axis are numbered, starting at 0. The coordinate of 0,
0 specifies the upper left corner of the View. Each point is se-
quentially numbered. The total number of points along the X
axis is specified by the width of the View. The total number of

points along the Y axis is specified by the Height of the View.

Shapes

Shapes are added and removed from a View using the addShape() and removeShape() functions. The draw()
and erase() functions draw and erase the outlines of all contained Shapes. The fill() and empty() functions
draw and erase the interiors of all contained Shapes.

Inheritance

The View class inherits from the Shape class.

Constructor

function View(inX, inY, inWidth, inHeight, inID, inParent, inDocument,
inBackgroundColor)

PARAMETER MEANING OPTIONAL

inX The X location of the upper left corner of
the View.

No

inY The Y location of the upper left corner of
the View.

No

inWidth The width of the View in pixels. No

inHeight The height of the View in pixels. No

inID A string containing the unique name of
the View.

No

12

PARAMETER MEANING OPTIONAL

inParent The JavaScript DOM object that is the par-
ent of the View. This will often be set to
document.body.

No

inDocument The JAavaScript DOM object representing
the document. Must be document.

No

inBackgroundColor The background color of the view. Yes. Defaults to transparent.

Sample

Key Functions Defined In View

View.prototype.setBackgroundColor = function (inColor)

Sets the background color of the View.

PARAMETER MEANING OPTIONAL

inColor The background color of the View. No

var oBackgroundColor = new Color(200, 200, 200, 0);
var oView = new View(0, 0, 100, 100, "View1", document.body, document,
oBackgroundColor);

13

Color

Red, Green, Blue, Alpha, And Transparent

Colors are defined using 3 numeric values between 0 and 255. A fourth value, called alpha, specifies the opacity of the
color and has a range of 0 to 1. These 4 values represent the amount of red, green, and blue that make of the color,
and the opacity of the color. Another way to specify a color is to simply declare it to be transparent. A transparent
color means no color at all and to use whatever colors are behind the object being declared transparent. Both the al-
pha value and the transparent declaration are optional when creating a color.

Lower numbers means less of that color should be used to make up the final color. Higher values mean more of that
color should be used.

Inheritance

None.

Constructor

function Color(inRed, inGreen, inBlue, inAlpha, inTransparent)
PARAMETER MEANING OPTIONAL

inRed The amount of red in the final color. Valid
values are integers between 0 and 255.

No

inGreen The amount of green in the final color.
Valid values are integers between 0 and
255.

No

inBlue The amount of blue in the final color. Valid
values are integers between 0 and 255.

No

inAlpha The amount of opacity in the color. Valid
values are real numbers between 0 and 1.

Yes. Defaults to 1.0 (a solid color)

inTransparent True if the color is transparent (completely
invisible), false otherwise.

Yes. Defaults to false.

14

Samples

Key Functions Defined In Color

Color.prototype.isEqual = function (inColor)
Returns true if this color object represents the same color as another color object, false otherwise.

PARAMETER MEANING OPTIONAL

inColor The Color object being compared to this
Color object.

No

// White
new Color(255, 255, 255);
// Black
new Color(0, 0, 0);
// Medium Grey
new Color(127, 127, 127);
// Dark Grey
new Color(64, 64, 64);
// Light Grey
new Color(191, 191, 191);
// Red
new Color(255, 0, 0);
// Green
new Color(0, 255, 0);
// Blue
new Color(0, 0, 255);
// Cyan
new Color(0, 255, 255);
// Purple
new Color(255, 0, 255);
// Yellow
new Color(255, 255, 0);
// Black With 1/2 Opacity (See-Thru)
new Color(0, 0, 0, 0.5);
// Fully Transparent (Invisible)
new Color(0, 0, 0, 0, true);

15

Color.prototype.invert = function()
Inverts the color represented by this object.

16

Shapes

Shape Classes

Shapes classes encapsulate nearly all of the functionality of the
Draw2D package. The base class for all shapes is the Shape class.
The other classes, View, Point, Rectangle, and so on, inherit from
Shape and therefore share all its capabilities. A diagram of the
Shape inheritance hierarchy is shown to the left.

Shape Base Class

Shapes are the base class for all other shape classes. You shouldn’t
ever create a Shape object directly, but knowing the functionality

Shape provides is important because this functionality is inherited by all other shape classes. The following key func-
tionality is define in the Shape base class:

● Shapes can be added and removed to other shapes to for parent/child relationships. Usually this is used to add and
remove shapes to and from a View.

● Shapes have an area.

● Shapes can be checked to see if a given point lies within the shape.

● Shapes can be checked for equality. Two shapes are equal if their X, Y, width, and height values are equal and all
their children are equal.

● Shapes can be drawn and erased, which displays and hides the outline of a shape. Shapes have a draw color.

● Shapes can be filled and emptied, which displays and hides the interior of a shape. Shapes have a fill color.

● The children of a shape can be drawn, erased, filled, and emptied separate from the shape itself.

● Shapes can be assigned event information to handle HTML events.

Shape Inheritance

None.

Shape Constructor

function Shape()

Key Functions Defined In Shape

Shape.prototype.addShape = function (inShape)
Adds a shape object as a child to this shape.

17

PARAMETER MEANING OPTIONAL

inShape The shape object to add as a child. No

Shape.prototype.removeShape = function (inShape)
Removes a shape object as a child from this shape.

PARAMETER MEANING OPTIONAL

inShape The shape object to remove as a child. No

Shape.prototype.getArea = function ()
Returns the area of the shape, as measuring in pixels.

Shape.prototype.containsPoint = function (inPoint)
Returns true if the shape contains the given point, false otherwise.

PARAMETER MEANING OPTIONAL

inPoint The Point object to check. No

Shape.prototype.isEqual = function (inShape)
Returns true if the shape is equal to the given shape, false otherwise. Two shapes are equal if their X, Y, width, and
height values are equal and all their children are equal.

PARAMETER MEANING OPTIONAL

inShape The shape object to compare for equality. No

Shape.prototype.draw = function (inView)
Draws the outline of the shape on the given View.

PARAMETER MEANING OPTIONAL

inView The View to draw the shape on. No

Shape.prototype.drawChildren = function (inView)
Draws the outline of the children of the shape on the given View.

PARAMETER MEANING OPTIONAL

inView The View to draw the children of the
shape on.

No

18

Shape.prototype.erase = function (inView)
Erases the outline of the shape from the given View.

PARAMETER MEANING OPTIONAL

inView The View to erase the shape from. No

Shape.prototype.eraseChildren = function (inView)
Erases the outline of the children of the shape from the given View.

PARAMETER MEANING OPTIONAL

inView The View to erase the children of the
shape from.

No

Shape.prototype.fill = function (inView, inEraseFlag)
Draws the interior of the shape on the given View.

PARAMETER MEANING OPTIONAL

inView The View to fill the shape to. No

Shape.prototype.fillChildren = function (inView)
Draws the interior of the children of the shape on the given View.

PARAMETER MEANING OPTIONAL

inView The View to fill the children of the shape
on.

No

Shape.prototype.empty = function (inView)
Erases the interior of the shape from the given View.

PARAMETER MEANING OPTIONAL

inView The View to empty the shape from. No

Shape.prototype.emptyChildren = function (inView)
Erases the interior of the children of the shape from the given View.

PARAMETER MEANING OPTIONAL

inView The View to empty the children of the
shape from.

No

19

Shape.prototype.setEventInfo = function (inEventInfo)
Sets the event handling information for the shape.

PARAMETER MEANING OPTIONAL

inEventInfo An EventInfo object containing the event
handling information for the shape.

No

Point Class

The Point class is used for drawing points and for performing a few ba-
sic mathematical operations on points.

Point Inheritance

The Point class inherits from the Shape class.

Point Constructor

function Point(inX, inY, inDrawColor)

PARAMETER MEANING OPTIONAL

inX The location of the Point on the X axis of
the parent View.

No

inY The location of the Point on the Y axis of
the parent View.

No

inDrawColor The Color object used to draw the point. No

Key Functions Defined In Point

Point.prototype.add = function (inPoint)
Mathematically adds the X and Y values of the inPoint parameter to the X and Y values of this point. The result is
stored in a new Point object which is returned as the value of the function.

PARAMETER MEANING OPTIONAL

inPoint A Point object. No

Point.prototype.subtract = function (inPoint)
Mathematically subtracts the X and Y values of the inPoint parameter from the X and Y values of this point. The re-
sult is stored in a new Point object which is returned as the value of the function.

20

PARAMETER MEANING OPTIONAL

inPoint A Point object. No

Point.prototype.getDistanceSquared = function (inPoint)
Returns the squared distance between this Point and the passed in Point object.

PARAMETER MEANING OPTIONAL

inPoint A Point object. No

Point.prototype.average = function(inPoint)
Mathematically calculates the average of this Point and the inPoint parameter by adding the two together and mul-
tiplying the resulting X and Y values by 0.5. The result is stored in a new Point object which is returned as the value
of the function.

PARAMETER MEANING OPTIONAL

inPoint A Point object. No

Point.prototype.dotProduct = function(inPoint)
Returns the dot product of this Point object and the inPoint parameter. The dot product is a floating point number,
not a Point object.

PARAMETER MEANING OPTIONAL

inPoint A Point object. No

Point.prototype.crossProduct = function(inPoint)
Returns the cross product of this Point object and the inPoint parameter. The cross product is a floating point number,
not a Point object.

PARAMETER MEANING OPTIONAL

inPoint A Point object. No

21

Line Class

The Line class is used for drawing lines and for performing a few basic
mathematical operations on lines.

Line Inheritance

The Line class inherits from the Shape class.

Line Constructor

function Line(inStartPoint, inEndPoint, in-
DrawColor)

PARAMETER MEANING OPTIONAL

inStartPoint A Point object defining the line’s starting
location in the parent View.

No

inEndPoint A Point object defining the line’s ending
location in the parent View.

No

inDrawColor The Color object used to draw the line. No

Key Functions Defined In Line

Line.prototype.getLength = function ()
Returns the length of the line. Note that this function performs a square root operation, which can be slow.

Line.prototype.getLengthSquared = function ()
Returns the squared length of the line.

QuadraticCurve Class

The QuadraticCurve class is used for quadratic curves. Quadratic
curves have a start point an end point and a center point. The distance
of the center point from the start and end point define the shape of the
curve.

QuadraticCurve Inheritance

The QuadraticCurve class inherits from the Shape class.

QuadraticCurve Constructor

function QuadraticCurve(inEndPoint1, inEnd-
Point2, inCenterPoint, inDrawColor, in-
Steps)

22

PARAMETER MEANING OPTIONAL

inStartPoint A Point object defining the curve’s starting
location in the parent View.

No

inEndPoint A Point object defining the curve’s ending
location in the parent View.

No

inCenterPoint A Point object defining the curve’s center
location in the parent View.

No

inDrawColor The Color object used to draw the curve. No

InSteps Controls the number of steps used to draw
the curve. Higher numbers provide a more
accurate rendering at the cost of speed.
Lower numbers sacrifice accuracy for im-
proved speed.

Yes. Defaults to 100.

CubicCurve Class

The CubicCurve class is used for cubic curves. Cubic curves have a start
point an end point and two center point. The distance of the center
points from the start and end point define the shape of the curve.

CubicCurve Inheritance

The CubicCurve class inherits from the Shape class.

CubicCurve Constructor

function CubicCurve(inEndPoint1, inEnd-
Point2, inCenterPoint1, inCenterPoint2, in-
DrawColor, inSteps)

PARAMETER MEANING OPTIONAL

inStartPoint A Point object defining the curve’s starting
location in the parent View.

No

inEndPoint A Point object defining the curve’s ending
location in the parent View.

No

inCenterPoint1 A Point object defining the curve’s center
location in the parent View.

No

inCenterPoint2 A Point object defining the curve’s center
location in the parent View.

No

23

PARAMETER MEANING OPTIONAL

inDrawColor The Color object used to draw the curve. No

inSteps Controls the number of steps used to draw
the curve. Higher numbers provide a more
accurate rendering at the cost of speed.
Lower numbers sacrifice accuracy for im-
proved speed.

Yes. Defaults to 100.

Triangle Class

The Triangle class is used for triangles. Triangles are defined by three
different points on a View, a draw color used to render the outline of the
Triangle and a fill color used to render the interior of the Triangle.

Triangle Inheritance

The Triangle class inherits from the Shape class.

Triangle Constructor

function Triangle(inPoint1, inPoint2, in-
Point3, inDrawColor, inFillColor)

PARAMETER MEANING OPTIONAL

inPoint1 One of three point Objects used to define
the location of the Triangle in the parent
View.

No

inPoint2 One of three point Objects used to define
the location of the Triangle in the parent
View.

No

inPoint3 One of three point Objects used to define
the location of the Triangle in the parent
View.

No

inDrawColor The Color object used to draw the outline
of the Triangle.

No

inFillColor The Color object used to draw the interior
of the Triangle.

No

24

Rect Class

The Rect class is used for rectangles. Rectangles are defined by an X and
Y location of the upper left corner of the rectangle, the width and height
of the rectangle, a draw color used to render the outline of the rectangle
and a fill color used to render the interior of the rectangle.

Rect Inheritance

The Rect class inherits from the Shape class.

Rect Constructor

function Rect(inX, inY, inWidth, inHeight,
inDrawColor, inFillColor)

PARAMETER MEANING OPTIONAL

inX The location of the upper left corner of the
Rectangle on the X axis of the parent View.

No

inY The location of the upper left corner of the
Rectangle on the Y axis of the parent View.

No

inWidth The width of the rectangle. No

inHeight The height of the rectangle. No

inDrawColor The Color object used to draw the outline
of the Rectangle.

No

inFillColor The Color object used to draw the interior
of the Rectangle.

No

Polygon Class

The Polygon class is used to define polygons. Polygons are made up of
a collection of sequential points, a flag indicating if the last point in the
list should be connected to the first, a Color used to render the outline
of the Polygon, and a Color used to render the interior of the Polygon.

Polygon Inheritance

The Polygon class inherits from the Shape class.

Polygon Constructor

function Polygon(inPoints, inCloseLoop, in-
DrawColor, inFillColor)

25

PARAMETER MEANING OPTIONAL

inPoints A JavaScript array containing Point objects
that define the boundary of the Polygon.

No

inCloseLoop Set to true if the last Point of the Polygon
should be connected to the first Point
when rendering the boundary of the Poly-
gon.

No

inDrawColor The Color object used to draw the outline
of the Rectangle.

No

inFillColor The Color object used to draw the interior
of the Rectangle.

No

Oval Class

The Oval class is used to define ovals. Ovals are defined by an X and Y
location of the upper left corner of the oval, the width and height of the
oval, a draw color used to render the outline of the oval and a fill color
used to render the interior of the oval.

An oval with an equal width and height is a circle.

Oval Inheritance

The Oval class inherits from the Shape class.

Oval Constructor

function Oval(inX, inY, inWidth, inHeight,
inDrawColor, inFillColor, inStep)

PARAMETER MEANING OPTIONAL

inX The location of the upper left corner of the
Oval on the X axis of the parent View.

No

inY The location of the upper left corner of the
Oval on the Y axis of the parent View.

No

inWidth The width of the Oval. No

inHeight The height of the Oval. No

inDrawColor The Color object used to draw the outline
of the Oval.

No

inFillColor The Color object used to draw the interior
of the Oval.

No

26

PARAMETER MEANING OPTIONAL

inStep Controls how many lines are used to draw
curves. Smaller numbers give more accu-
rate results at the cost of speed. Larger
numbers give faster results at the cost of
accuracy.

Yes. Defaults to 0.01.

Arc Class
The Arc class is used to define
arcs. Arc are defined by an X
and Y location of the upper
left corner of the arc, the width
and height of the arc, the start
and end angle of the arc,
whether or not the arc should
connect to the center of the
circle on which it is formed, a
draw color used to render the
outline of the arc and a fill
color used to render the inte-

rior of the arc.

Arc Inheritance

The Arc class inherits from the Shape class.

Arc Constructor

function Arc(inX, inY, inWidth, inHeight, inStartAngle, inEndAngle,
inConnectToCenter, inDrawColor, inFillColor, inStep)

PARAMETER MEANING OPTIONAL

inX The location of the upper left corner of the
Arc on the X axis of the parent View.

No

inY The location of the upper left corner of the
Arc on the Y axis of the parent View.

No

inWidth The width of the Arc. No

inHeight The height of the Arc. No

inStartAngle The angle on the circle where the Arc be-
gins. Angle zero is at the bottom of the
circle. Increased angles move counter-
clockwise.

No

27

PARAMETER MEANING OPTIONAL

inEndAngle The angle on the circle where the Arc
ends. Angle zero is at the bottom of the
circle. Increased angles move counter-
clockwise.

No

inConnectToCenter A boolean value indicating if the arc
should connect to the center of the circle
it’s on, as in a pie chart, or simply have the
end of the arc connect to the beginning of
the arc with a single straight line.

No

inDrawColor The Color object used to draw the outline
of the Arc.

No

inFillColor The Color object used to draw the interior
of the Arc.

No

inStep Controls how many lines are used to draw
curves. Smaller numbers give more accu-
rate results at the cost of speed. Larger
numbers give faster results at the cost of
accuracy.

Yes. Defaults to 0.01.

RoundRect Class
The RoundRect class is used to define a
rectangle with rounded corners. Roun-
dRect are defined by an X and Y location
of the upper left corner of the RoundRect,
the width and height of the RoundRect,
the width and height of the Oval used to
draw the rounded corners of the Roun-
dRect, a draw color used to render the
outline of the RoundRect and a fill color

used to render the interior of the RoundRect.

RoundRect Inheritance

The RoundRect class inherits from the Shape class.

RoundRect Constructor

function RoundRect(inX, inY, inWidth, inHeight, inOvalWidth, inOval-
Height, inDrawColor, inFillColor, inStep)

28

PARAMETER MEANING OPTIONAL

inX The location of the upper left corner of the
RoundRect on the X axis of the parent
View.

No

inY The location of the upper left corner of the
RoundRect on the Y axis of the parent
View.

No

inWidth The width of the RoundRect. No

inHeight The height of the RoundRect. No

inOvalWidth The width of the Oval used to draw the
RoundRect’s corners.

No

inOvalHeight The height of the Oval used to draw the
RoundRect’s corners.

No

inDrawColor The Color object used to draw the outline
of the RoundRect.

No

inFillColor The Color object used to draw the interior
of the RoundRect.

No

inStep Controls how many lines are used to draw
curves. Smaller numbers give more accu-
rate results at the cost of speed. Larger
numbers give faster results at the cost of
accuracy.

Yes. Defaults to 0.01.

29

Events

Events

The shapes of Draw2D can be programmed to respond to various mouse events. You can program the shapes to exe-
cute a function or change their draw color or fill color when a supported mouse event occurs. The mouse events sup-
ported are:

● Mouse Click

● Mouse Down

● Mouse Up

● Mouse Double Click

● Mouse Over

● Mouse Out

EventInfo Class

The EventInfo class stores information about how to handle events. The class has two data members, mouseClickInfo
and mouseMoveInfo. You can set these using the EventInfo constructor, or at any time after construction. You then
use the setEventInfo() function of the Shape class to assign the EventInfo object to a Shape and give it event handling
capabilities.

EventInfo Inheritance

None.

EventInfo Constructor

function EventInfo(inMouseClickInfo, inMouseMoveInfo)
PARAMETER MEANING OPTIONAL

inMouseClickInfo A MouseClickInfo object defining how the
Shape handles mouse click events.

Yes

inMouseMoveInfo A MouseMoveInfo object defining how
the Shape handles mouse move events.

Yes

● Mouse Out

MouseClickInfo Class

The MouseClickInfo class stores information about how to handle mouse click events. Members of the class provide
the ability to set a function, a draw color, and a fill color that are used whenever any of the following events occur.

30

● Mouse Click

● Mouse Down

● Mouse Up

● Mouse Double Click

Each of these events can have unique functions, draw colors, and fill colors.

MouseClickInfo Inheritance

None.

MouseClickInfo Constructor

function MouseClickInfo(inMouseClickFunction, inMouseClickColor, in-
MouseClickFillColor, inMouseDownFunction, inMouseDownColor, inMouse-
DownFillColor, inMouseUpFunction, inMouseUpColor, inMouseUpFillColor,
inMouseDoubleClickFunction, inMouseDoubleClickColor, inMouseDouble-
ClickFillColor)

PARAMETER MEANING OPTIONAL

inMouseClickFunc-
tion

The function called to handle mouse click
events that occur on the Shape.

Yes

inMouseClickColor The Color used to draw the Shape when
mouse click events occur.

Yes

inMouseClickFill-
Color

The Color used to fill the Shape when
mouse click events occur.

Yes

inMouseDownFunc-
tion

The function called to handle mouse down
events that occur on the Shape.

Yes

inMouseDownColor The Color used to draw the Shape when
mouse down events occur.

Yes

inMouseDownFill-
Color

The Color used to fill the Shape when
mouse down events occur.

Yes

inMouseUpFunction The function called to handle mouse up
events that occur on the Shape.

Yes

inMouseUpColor The Color used to draw the Shape when
mouse up events occur.

Yes

inMouseUpFillColor The Color used to fill the Shape when
mouse up events occur.

Yes

31

PARAMETER MEANING OPTIONAL

inMouseDouble-
ClickFunction

The function called to handle mouse dou-
ble click events that occur on the Shape.

Yes

inMouseDouble-
ClickColor

The Color used to draw the Shape when
mouse double click events occur.

Yes

inMouseDouble-
ClickFillColor

The Color used to fill the Shape when
mouse double click events occur.

Yes

The MouseClickInfo class has the following members, all of which can be set directly in the code.

	 this.mouseClickFunction
	 this.mouseClickColor
	 this.mouseClickFillColor
	 this.mouseDownFunction
	 this.mouseDownColor
	 this.mouseDownFillColor
	 this.mouseUpFunction
	 this.mouseUpColor
	 this.mouseUpFillColor
	 this.mouseDoubleClickFunction
	 this.mouseDoubleClickColor
	 this.mouseDoubleClickFillColor
MouseMoveInfo Class

The MouseMoveInfo class stores information about how to handle mouse move events. Members of the class provide
the ability to set a function, a draw color, and a fill color that are used whenever any of the following events occur.

● Mouse Over

● Mouse Out

Each of these events can have unique functions, draw colors, and fill colors.

MouseMoveInfo Inheritance

None.

MouseMoveInfo Constructor

function MouseMoveInfo(inMouseOverFunction, inMouseOverColor, inMouse-
OverFillColor, inMouseOutFunction, inMouseOutColor, inMouseOutFill-
Color)

32

PARAMETER MEANING OPTIONAL

inMouseOverFunc-
tion

The function called to handle mouse click
over that occur on the Shape.

Yes

inMouseOverColor The Color used to draw the Shape when
mouse over events occur.

Yes

inMouseOverFill-
Color

The Color used to fill the Shape when
mouse over events occur.

Yes

inMouseOutFunction The function called to handle mouse over
events that occur on the Shape.

Yes

inMouseOutColor The Color used to draw the Shape when
mouse over events occur.

Yes

inMouseOutFill-
Color

The Color used to fill the Shape when
mouse over events occur.

Yes

The MouseMoveInfo class has the following members, all of which can be set directly in the code.

	 this.mouseOverFunction
	 this.mouseOverColor
	 this.mouseOverFillColor
	 this.mouseOutFunction
	 this.mouseOutColor
	 this.mouseOutFillColor
Event Functions

The event function used to handle events and assigned to MouseClickInfo and mouseMoveInfo members is a simpe
function that is passed no parameters and its return value is never checked. The code below shows a simple event
function.

The Code example below hows how to assign event handling code to a Shape.

33

var oMouseMoveInfo = new MouseMoveInfo();
	
oMouseMoveInfo.mouseOverFunction = function(){};

var oRect = new Rect(10, 10, 80, 80, oBlack, oRed);
var oMouseClickInfo = new MouseClickInfo();
var oMouseMoveInfo = new MouseMoveInfo();
var oEventInfo = new EventInfo();
var oBlack = new Color(0, 0, 0);
var oRed = new Color(255, 0, 0);
var oGreen = new Color(0, 255, 0);
var oBlue = new Color(0, 0, 255);
var oYellow = new Color(255, 255, 0);
var oPurple = new Color(255, 0, 255);
	
oEventInfo.mouseClickInfo = oMouseClickInfo;
oEventInfo.mouseMoveInfo = oMouseMoveInfo;
oMouseMoveInfo.mouseOverFunction = function(){};
oMouseMoveInfo.mouseOverColor = oBlue;
oMouseMoveInfo.mouseOverFillColor = oBlue;
oMouseMoveInfo.mouseOutFunction = function(){};
oMouseMoveInfo.mouseOutColor = oBlack;
oMouseMoveInfo.mouseOutFillColor = oRed;
oMouseClickInfo.mouseClickFunction = function(){alert("click");};
oMouseClickInfo.mouseClickColor = oYellow;
oMouseClickInfo.mouseClickFillColor = oYellow;
oMouseClickInfo.mouseDoubleClickFunction = function(){alert("double
click");};
oMouseClickInfo.mouseDoubleClickColor = oGreen;
oMouseClickInfo.mouseDoubleClickFillColor = oGreen;
oMouseClickInfo.mouseDownFunction = function(){alert("down");};
oMouseClickInfo.mouseDownColor = oPurple;
oMouseClickInfo.mouseDownFillColor = oPurple;
oMouseClickInfo.mouseUpFunction = function(){alert("up");};
oMouseClickInfo.mouseUpColor = oBlack;
oMouseClickInfo.mouseUpFillColor = oRed;
oRect.setEventInfo(oEventInfo);

34

