How to extract meaningful information from big data has been a popular open problem. Decision tree, which has a high degree of knowledge interpretation, has been favored in many real world applications. However noisy values commonly exist in high-speed data streams, e.g. real-time online data feeds that are prone to interference. When processing big data, it is hard to implement pre-processing and sampling in full batches. To solve this trade-off, we propose a new decision tree so called incrementally optimized very fast decision tree (iOVFDT). Inheriting the use of Hoeffding bound in VFDT algorithm for node-splitting check, it contains four optional strategies of functional tree leaf, which improve the classifying accuracy. In addition, a multi-objective incremental optimization mechanism investigates a balance among accuracy, mode size and learning speed...

Project Samples

Project Activity

See All Activity >

Categories

Big Data

Follow iOVFDT

iOVFDT Web Site

Other Useful Business Software
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of iOVFDT!

Additional Project Details

Registered

2013-02-01